313 research outputs found

    From spinons to magnons in explicit and spontaneously dimerized antiferromagnetic chains

    Full text link
    We reconsider the excitation spectra of a dimerized and frustrated antiferromagnetic Heisenberg chain. This model is taken as the simpler example of compiting spontaneous and explicit dimerization relevant for Spin-Peierls compounds. The bosonized theory is a two frequency Sine-Gordon field theory. We analize the excitation spectrum by semiclassical methods. The elementary triplet excitation corresponds to an extended magnon whose radius diverge for vanishing dimerization. The internal oscilations of the magnon give rise to a series of excited state until another magnon is emited and a two magnon continuum is reached. We discuss, for weak dimerization, in which way the magnon forms as a result of a spinon-spinon interaction potential.Comment: 5 pages, latex, 3 figures embedded in the tex

    Excitations with fractional spin less than 1/2 in frustrated magnetoelastic chains

    Full text link
    We study the magnetic excitations on top of the plateaux states recently discovered in spin-Peierls systems in a magnetic field. We show by means of extensive density matrix renormalization group (DMRG) computations and an analytic approach that one single spin-flip on top of M=1−2NM=1-\frac2N (N=3,4,...N=3,4,...) plateau decays into NN elementary excitations each carrying a fraction 1N\frac1N of the spin. This fractionalization goes beyond the well-known decay of one magnon into two spinons taking place on top of the M=0 plateau. Concentrating on the 13\frac13 plateau (N=3) we unravel the microscopic structure of the domain walls which carry fractional spin-13\frac13, both from theory and numerics. These excitations are shown to be noninteracting and should be observable in x-ray and nuclear magnetic resonance experiments.Comment: 6 pages, 5 figures. Accepted to be published in Phys. Rev.

    Pressure dependence of the melting mechanism at the limit of overheating in Lennard-Jones crystals

    Full text link
    We study the pressure dependence of the melting mechanism of a surface free Lennard-Jones crystal by constant pressure Monte Carlo simulation. The difference between the overheating temperature(TOHT_{OH}) and the thermodynamical melting point(TMT_M) increase for increasing pressure. When particles move into the repulsive part of the potential the properties at TOHT_{OH} change. There is a crossover pressure where the volume jump becomes pressure-independent. The overheating limit is pre-announced by thermal excitation of big clusters of defects. The temperature zone where the system is dominated by these big clusters of defects increases with increasing pressure. Beyond the crossover pressure we find that excitation of defects and clusters of them start at the same temperature scale related with TOHT_{OH}.Comment: 6 pages, 5 figures. Accepted for publication in Physical Review

    Mixing of magnetic and phononic excitations in incommensurate Spin-Peierls systems

    Full text link
    We analyze the excitation spectra of a spin-phonon coupled chain in the presence of a soliton. This is taken as a microscopic model of a Spin-Peierls material placed in a high magnetic field. We show, by using a semiclassical approximation in the bosonized representation of the spins that a trapped magnetic state obtained in the adiabatic approximation is destroyed by dynamical phonons. Low energy states are phonons trapped by the soliton. When the magnetic gap is smaller than the phonon frequencies the only low energy state is a mixed magneto-phonon state with the energy of the gap. We emphasize that our results are relevant for the Raman spectra of the inorganic Spin-Peierls material CuGeO3_3.Comment: 5 pages, latex, 2 figures embedded in the tex

    Liquefaction Potential of Recent Fills versus Natural Sands Located in High-Seismicity Regions Using Shear-Wave Velocity

    Get PDF
    The liquefaction potential of clean and silty sands is examined on the basis of the field measurement of the shear-wave velocity, Vs. The starting point is the database of 225 case histories supporting the Andrus-Stokoe Vs-based liquefaction chart for sands, silts, and gravels. Only clean and silty sands with nonplastic fines are considered, resulting in a reduced database of 110 case histories, which are plotted separately by type of deposit. A line of constant cyclic shear strain, γcl≈0.03%, is recommended for liquefaction evaluation of recent uncompacted clean and silty sand fills and earthquake magnitude, Mw=7.5. The geologically recent natural silty sand sites in the Imperial Valley of southern California have significantly higher liquefaction resistance as a result of preshaking caused by the high seismic activity in the valley. A line of constant cyclic shear strain, γcl≈0.1–0.2%, is recommended for practical use in the Imperial Valley. Additional research including revisiting available Vs-based and penetration-based databases is proposed to generalize the results of the paper and develop liquefaction charts that account more realistically for deposit type, seismic history, and geologic age

    Microscopic theory for the incommensurate transition in TiOCl

    Full text link
    We propose a microscopic mechanism for the incommensurate phase in TiOX compounds. The model includes the antiferromagnetic chains of Ti ions immersed in the phonon bath of the bilayer structure. Making use of the Cross-Fisher theory, we show that the geometrically frustrated character of the lattice is responsible for the structural instability which leads the chains to an incommensurate phase without an applied magnetic field. In the case of TiOCl, we show that our model is consistent with the measured phonon frequencies at T=300KT=300K and the value of the incommensuration vector at the transition temperature. Moreover, we find that the dynamical structure factor shows a progressive softening of an incommensurate phonon near the zone boundary as the temperature decreases. This softening is accompanied by a broadening of the peak which gets asymmetrical as well when going towards the transition temperature. These features are in agreement with the experimental inelastic X-ray measurements.Comment: 6 pages, 5 figures. Published versio

    Influence of the anion potential on the charge ordering in quasi-one dimensional charge transfer salts

    Full text link
    We examine the various instabilities of quarter-filled strongly correlated electronic chains in the presence of a coupling to the underlying lattice. To mimic the physics of the (TMTTF)2_2X Bechgaard-Fabre salts we also include electrostatic effects of intercalated anions. We show that small displacements of the anion can stabilize new mixed Charged Density Wave-Bond Order Wave phases in which central symmetry centers are suppressed. This finding is discussed in the context of recent experiments. We suggest that the recently observed charge ordering is due to a cooperative effect between the Coulomb interaction and the coupling of the electronic stacks to the anions. On the other hand, the Spin-Peierls instability at lower temperature requires a Peierls-like lattice coupling.Comment: Latex, 4 pages, 4 postscript figure

    Modeling seismic wave propagation and amplification in 1D/2D/3D linear and nonlinear unbounded media

    Full text link
    To analyze seismic wave propagation in geological structures, it is possible to consider various numerical approaches: the finite difference method, the spectral element method, the boundary element method, the finite element method, the finite volume method, etc. All these methods have various advantages and drawbacks. The amplification of seismic waves in surface soil layers is mainly due to the velocity contrast between these layers and, possibly, to topographic effects around crests and hills. The influence of the geometry of alluvial basins on the amplification process is also know to be large. Nevertheless, strong heterogeneities and complex geometries are not easy to take into account with all numerical methods. 2D/3D models are needed in many situations and the efficiency/accuracy of the numerical methods in such cases is in question. Furthermore, the radiation conditions at infinity are not easy to handle with finite differences or finite/spectral elements whereas it is explicitely accounted in the Boundary Element Method. Various absorbing layer methods (e.g. F-PML, M-PML) were recently proposed to attenuate the spurious wave reflections especially in some difficult cases such as shallow numerical models or grazing incidences. Finally, strong earthquakes involve nonlinear effects in surficial soil layers. To model strong ground motion, it is thus necessary to consider the nonlinear dynamic behaviour of soils and simultaneously investigate seismic wave propagation in complex 2D/3D geological structures! Recent advances in numerical formulations and constitutive models in such complex situations are presented and discussed in this paper. A crucial issue is the availability of the field/laboratory data to feed and validate such models.Comment: of International Journal Geomechanics (2010) 1-1
    • …
    corecore