4 research outputs found
Light control of surface–bulk coupling by terahertz vibrational coherence in a topological insulator
The demand for disorder-tolerant quantum logic and spin electronics can be met by generating and controlling dissipationless spin currents protected by topology. Dirac fermions with helical spin-locking surface transport offer a way of achieving such a goal. Yet, surface-bulk coupling can lead to strong Dirac electron scattering with bulk carriers and phonons as well as impurities, assisted by such dissipative channel, which results in “topological breakdown”. Here, we demonstrate that coherent lattice vibrations periodically driven by a single-cycle terahertz (THz) pulse can significantly suppress such dissipative channel in topological insulators. This is achieved by reducing the phase space in the bulk available for Dirac fermion scattering into during coherent lattice oscillations in Bi2Se3. This light-induced suppression manifests as a remarkable transition exclusively in surface transport, absent for bulk, above the THz electric fields for driving coherent phonons, which prolongs the surface transport lifetime. These results, together with simulations, identify the critical role of spin–orbit coupling for the “phase space contraction” mechanism that suppresses the surface-bulk coupling. Imposing vibrational quantum coherence into topological states of matter may become a universal light control principle for reinforcing the symmetry-protected helical transport
Observation of oscillatory relaxation in the Sn-terminated surface of epitaxial rock-salt SnSe topological crystalline insulator
Topological crystalline insulators have been recently predicted and observed
in rock-salt structure SnSe thin films. Previous studies have
suggested that the Se-terminated surface of this thin film with hydrogen
passivation, has a reduced surface energy and is thus a preferred
configuration. In this paper, synchrotron-based angle-resolved photoemission
spectroscopy, along with density functional theory calculations, are used to
demonstrate conclusively that a rock-salt SnSe thin film
epitaxially-grown on \ce{Bi2Se3} has a stable Sn-terminated surface. These
observations are supported by low energy electron diffraction (LEED)
intensity-voltage measurements and dynamical LEED calculations, which further
show that the Sn-terminated SnSe thin film has undergone a surface
structural relaxation of the interlayer spacing between the Sn and Se atomic
planes. In sharp contrast to the Se-terminated counterpart, the observed Dirac
surface state in the Sn-terminated SnSe thin film is shown to yield a
high Fermi velocity, m/s, which suggests a potential mechanism
of engineering the Dirac surface state of topological materials by tuning the
surface configuration.Comment: 12 pages, 13 figures, supplementary materials include
Light control of surface–bulk coupling by terahertz vibrational coherence in a topological insulator
The demand for disorder-tolerant quantum logic and spin electronics can be met by generating and controlling dissipationless spin currents protected by topology. Dirac fermions with helical spin-locking surface transport offer a way of achieving such a goal. Yet, surface-bulk coupling can lead to strong Dirac electron scattering with bulk carriers and phonons as well as impurities, assisted by such dissipative channel, which results in “topological breakdown”. Here, we demonstrate that coherent lattice vibrations periodically driven by a single-cycle terahertz (THz) pulse can significantly suppress such dissipative channel in topological insulators. This is achieved by reducing the phase space in the bulk available for Dirac fermion scattering into during coherent lattice oscillations in Bi2Se3. This light-induced suppression manifests as a remarkable transition exclusively in surface transport, absent for bulk, above the THz electric fields for driving coherent phonons, which prolongs the surface transport lifetime. These results, together with simulations, identify the critical role of spin–orbit coupling for the “phase space contraction” mechanism that suppresses the surface-bulk coupling. Imposing vibrational quantum coherence into topological states of matter may become a universal light control principle for reinforcing the symmetry-protected helical transport.</p