48 research outputs found

    ANALYSIS OF THE RESULTS OF SURGICAL PROCEDURES ADVISABLE FOR CHRONIC PANCREATITIS WITH THE PREDOMINANT LESION OF THE PANCREATIC HEAD

    Get PDF
    Recently, studies comparing various variants of operations to establish the optimal method of surgical treatmentΒ for chronic pancreatitis with pancreatic head lesions from the point of view of evidence-based medicine have beenΒ carried out in the world. However, these comparative studies do not take into account differences in the clinical andΒ morphological forms of the disease, in particular, chronic pancreatitis with a predominant and isolated lesion of the head.Β Subtotal resection of the pancreatic head with proximal pancreatojejunostomy, suitable for an isolated lesion of the head,Β does not solve all the problems of chronic pancreatitis with a predominant lesion of the head. In this case, the violationΒ of the outflow of pancreatic juice along the pathologically changed main pancreatic duct from the left half of the glandΒ is not eliminated. It is impossible to unambiguously support the hypothesis of the feasibility of performing subtotalΒ resection of the pancreatic head with proximal pancreatojejunostomy in chronic pancreatitis with a predominant lesionΒ of the head with a uniformly expanded main pancreatic duct. With this form of chronic pancreatitis, cicatricial stricturesΒ can form in the main pancreatic duct, which can lead to ductal hypertension and serve as an indication for reoperation.Β The feasibility of using Beger operation in chronic pancreatitis with a predominant lesion of the head is doubtful, sinceΒ the intersection of the isthmus and the need for a T-shaped longitudinal pancreatojejunostomy makes this interventionΒ technically difficult and unsafe. Based on the studies performed, it is impossible to say with certainty about the reliableΒ advantages of one type of operations over another. To obtain reliable results, it’s necessary to conduct evidence-basedΒ studies comparing subtotal resection of the pancreatic head with longitudinal pancreatojejunostomy with other typesΒ of interventions only for chronic pancreatitis with a predominant head lesion, excluding from the study patients withΒ chronic pancreatitis with isolated head lesion

    ΠŸΠ Π˜ΠœΠ•ΠΠ•ΠΠ˜Π• ΠœΠΠžΠ“ΠžΠšΠΠΠΠ›Π¬ΠΠžΠ“Πž ΠŸΠΠ•Π’ΠœΠžΠœΠ•Π’Π Π˜Π§Π•Π‘ΠšΠžΠ“Πž Π—ΠžΠΠ”Π Π”Π›Π― Π˜Π‘Π‘Π›Π•Π”ΠžΠ’ΠΠΠ˜Π― ΠŸΠ ΠžΠ€Π˜Π›Π― БКОРОБВИ Π’Π•ΠŸΠ›ΠžΠΠžΠ‘Π˜Π’Π•Π›Π― Π’ ΠœΠžΠ”Π•Π›Π―Π₯ Π’ΠžΠŸΠ›Π˜Π’ΠΠ«Π₯ ΠšΠΠ‘Π‘Π•Π’ ЯДЕРНЫΠ₯ Π Π•ΠΠšΠ’ΠžΠ ΠžΠ’

    Get PDF
    Development of heat and mass transfer intensifiers is a major engineering task in the design of new and modernization of existing fuel assemblies. These devices create lateral mass flow of coolant. Design of intensifiers affects both the coolant mixing and the hydraulic resistance. The aim of this work is to develop a methodology of measuring coolant local velocity in the fuel assembly models with different mixing grids. To solve the problems was manufactured and calibrated multihole pressure probe. The air flow velocity measuring method with multihole pressure probe was used in the experimental studies on the coolant local hydrodynamics in fuel assemblies with mixing grids. Analysis of the coolant lateral velocity vector fields allowed to study the formation of the secondary vortex flows behind the mixing grids, and to determine the basic laws of coolant flow in experimental models. Quantitative data on the coolant flow velocity distribution obtained with a multihole pressure probe make possible to determine the magnitude of the flow lateral velocities in fuel rod gaps, as well as to determine the distance at which damping occurs during mixing.Β Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° интСнсификаторов Ρ‚Π΅ΠΏΠ»ΠΎΠΈ массообмСна являСтся Π²Π°ΠΆΠ½ΠΎΠΉ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ ΠΏΡ€ΠΈ конструировании Π½ΠΎΠ²Ρ‹Ρ… ΠΈ ΠΌΠΎΠ΄Π΅Ρ€Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹Π΄Π΅Π»ΡΡŽΡ‰ΠΈΡ… сборок (Π’Π’Π‘). Π’Π°ΠΊΠΈΠ΅ устройства ΡΠΎΠ·Π΄Π°ΡŽΡ‚ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½Ρ‹ΠΉ основному ΠΏΠΎΡ‚ΠΎΠΊΡƒ пСрСнос массы тСплоноситСля. Π’ Ρ‚ΠΎ ΠΆΠ΅ врСмя конструкция интСнсификаторов влияСт ΠΊΠ°ΠΊ Π½Π° ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ тСплоноситСля, Ρ‚Π°ΠΊ ΠΈ Π½Π° гидравличСскоС сопротивлСниС. ЦСлью Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлась Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ измСрСния Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² скорости тСплоноситСля Π² модСлях Π’Π’Π‘ с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°ΡŽΡ‰ΠΈΠΌΠΈ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΊΠ°ΠΌΠΈ. Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ поставлСнных Π·Π°Π΄Π°Ρ‡ Π±Ρ‹Π» ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ пнСвмомСтричСский ΠΏΡΡ‚ΠΈΠΊΠ°Π½Π°Π»ΡŒΠ½Ρ‹ΠΉ Π·ΠΎΠ½Π΄, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° Π΅Π³ΠΎ Ρ‚Π°Ρ€ΠΈΡ€ΠΎΠ²ΠΊΠ° Π² ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΌ ΠΏΠΎΡ‚ΠΎΠΊΠ΅ Π²ΠΎΠ·Π΄ΡƒΡ…Π° с Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΡƒΠ³Π»Π°Ρ… установки Π·ΠΎΠ½Π΄Π°. По Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ Ρ‚Π°Ρ€ΠΈΡ€ΠΎΠ²ΠΊΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ числСнныС значСния Π±Π΅Π·Ρ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Ρ… комплСксов давлСния Π² ΠΊΠ°Π½Π°Π»Π°Ρ… Π·ΠΎΠ½Π΄Π° ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° ΠΈΡ… Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΎΡ‚ ΡƒΠ³Π»ΠΎΠ² набСгания Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ°. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π½Π°Ρ Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° измСрСния Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости ΠΏΠΎΡ‚ΠΎΠΊΠ° Π²ΠΎΠ·Π΄ΡƒΡ…Π° ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ°Π½Π°Π»ΡŒΠ½Ρ‹ΠΌ пнСвмомСтричСским Π·ΠΎΠ½Π΄ΠΎΠΌ Π±Ρ‹Π»Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½Π° Π² ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдованиях ΠΏΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ локальной Π³ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ Π² Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹Π΄Π΅Π»ΡΡŽΡ‰ΠΈΡ… сборках с ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°ΡŽΡ‰ΠΈΠΌΠΈ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΊΠ°ΠΌΠΈ. Анализ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΏΠΎΠ»Π΅ΠΉ ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠΉ скорости тСплоноситСля ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½Ρ‹Ρ… Π²ΠΈΡ…Ρ€Π΅Π²Ρ‹Ρ… Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠΉ Π·Π° ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°ΡŽΡ‰ΠΈΠΌΠΈ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΊΠ°ΠΌΠΈ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π’Π’Π‘, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ основныС закономСрности двиТСния тСплоноситСля. ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ распрСдСлСнии всСх Ρ‚Ρ€Π΅Ρ… ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости ΠΏΠΎΡ‚ΠΎΠΊΠ° тСплоноситСля, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡΡ‚ΠΈΠΊΠ°Π½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π·ΠΎΠ½Π΄Π°, ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½Ρ‹Ρ… скоростСй ΠΏΠΎΡ‚ΠΎΠΊΠ° Π² ΠΌΠ΅ΠΆΡ‚Π²ΡΠ»ΡŒΠ½Ρ‹Ρ… Π·Π°Π·ΠΎΡ€Π°Ρ…, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ расстояниС, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ происходит Π·Π°Ρ‚ΡƒΡ…Π°Π½ΠΈΠ΅ процСссов ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°Π½ΠΈΡ.

    ИсслСдованиС локальной Π³ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ тСплоноситСля Π² смСшанной Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ Π·ΠΎΠ½Π΅ Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° Π’Π’Π­Π 

    Get PDF
    The article presents the results of experimental studies of the local hydrodynamics of the coolant flow in the mixed core of the VVER reactor, consisting of the TVSA-T and TVSA-T mod.2 fuel assemblies. Modeling of the flow of the coolant flow in the fuel rod bundle was carried out on an aerodynamic test stand. The research was carried out on a model of a fragment of a mixed core of a VVER reactor consisting of one TVSA-T segment and two segments of the TVSA-T.mod2. The flow pressure fields were measured with a five-channel pneumometric probe. The flow pressure field was converted to the direction and value of the coolant velocity vector according to the dependencies obtained during calibration. To obtain a detailed data of the flow, a characteristic cross-section area of the model was selected, including the space cross flow between fuel assemblies and four rows of fuel rods of each of the TVSA fuel assemblies. In the framework of this study the analysis of the spatial distribution of the projections of the velocity of the coolant flow was fulfilled that has made it possible to pinpoint regularities that are intrinsic to the coolant flowing around spacing, mixing and combined spacing grates of the TVSA. Also, the values of the transverse flow of the coolant caused by the flow along hydraulically nonidentical grates were determined and their localization in the longitudinal and cross sections of the experimental model was revealed. Besides, the effect of accumulation of hydrodynamic flow disturbances in the longitudinal and cross sections of the model caused by the staggered arrangement of hydraulically non-identical grates was determined. The results of the study of the coolant cross flow between fuel assemblies interaction, i.e. between the adjacent TVSA-T and TVSA-T mod.2 fuel assemblies were adopted for practical use in the JSC of β€œAfrikantov OKB Mechanical Engineering” for assessing the heat engineering reliability of VVER reactor cores; also, they were included in the database for verification of computational hydrodynamics programs (CFD codes) and for detailed cell-based calculation of the reactor core.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСны Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований локальной Π³ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΏΠΎΡ‚ΠΎΠΊΠ° тСплоноситСля Π² смСшанной Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ Π·ΠΎΠ½Π΅ Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° Π’Π’Π­Π , состоящСй ΠΈΠ· ВВБА-Π’ ΠΈ ВВБА-Π’.mod.2. ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ процСссов тСчСния ΠΏΠΎΡ‚ΠΎΠΊΠ° тСплоноситСля Π² ΠΏΡƒΡ‡ΠΊΠ΅ твэлов ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ Π½Π° аэродинамичСском стСндС. ИсслСдования ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΠ»ΠΈΡΡŒ Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π° смСшанной Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ Π·ΠΎΠ½Ρ‹ Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° Π’Π’Π­Π , состоящСй ΠΈΠ· ΠΎΠ΄Π½ΠΎΠ³ΠΎ сСгмСнта ВВБА-Π’ ΠΈ Π΄Π²ΡƒΡ… ВВБА-Π’.mod.2. Поля Π΄Π°Π²Π»Π΅Π½ΠΈΠΉ ΠΏΠΎΡ‚ΠΎΠΊΠ° измСряли ΠΏΡΡ‚ΠΈΠΊΠ°Π½Π°Π»ΡŒΠ½Ρ‹ΠΌ пнСвмомСтричСским Π·ΠΎΠ½Π΄ΠΎΠΌ. ПолС Π΄Π°Π²Π»Π΅Π½ΠΈΠΉ ΠΏΠΎΡ‚ΠΎΠΊΠ° согласно зависимостям, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌ ΠΏΡ€ΠΈ Ρ‚Π°Ρ€ΠΈΡ€ΠΎΠ²ΠΊΠ΅, ΠΏΠ΅Ρ€Π΅ΡΡ‡ΠΈΡ‚Ρ‹Π²Π°Π»ΠΎΡΡŒ Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° скорости тСплоноситСля. Для создания Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½Ρ‹ тСчСния ΠΏΠΎΡ‚ΠΎΠΊΠ° Π±Ρ‹Π»Π° Π²Ρ‹Π΄Π΅Π»Π΅Π½Π° характСрная ΠΎΠ±Π»Π°ΡΡ‚ΡŒ ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠ³ΠΎ сСчСния ΠΌΠΎΠ΄Π΅Π»ΠΈ, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π°Ρ мСТкассСтноС пространство ΠΈ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ ряда твэлов ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π½Ρ‹Ρ… сборок ВВБА. Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π΄Π°Π½Π½ΠΎΠ³ΠΎ исслСдования ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· пространствСнного распрСдСлСния ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ скорости ΠΏΠΎΡ‚ΠΎΠΊΠ° тСплоноситСля, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ закономСрности обтСкания тСплоноситСлСм Π΄ΠΈΡΡ‚Π°Π½Ρ†ΠΈΠΎΠ½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ…, ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π΄ΠΈΡΡ‚Π°Π½Ρ†ΠΈΠΎΠ½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΠΊ ВВБА, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½Ρ‹Ρ… ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ² тСплоноситСля, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Ρ… ΠΎΠ±Ρ‚Π΅ΠΊΠ°Π½ΠΈΠ΅ΠΌ гидравличСски Π½Π΅ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ‡Π½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΠΊ, установлСна ΠΈΡ… локализация Π² ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΡŒΠ½ΠΎΠΌ ΠΈ ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠΌ сСчСниях ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, выявлСн эффСкт накоплСния гидродинамичСских Π²ΠΎΠ·ΠΌΡƒΡ‰Π΅Π½ΠΈΠΉ ΠΏΠΎΡ‚ΠΎΠΊΠ° Π² ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΡŒΠ½ΠΎΠΌ ΠΈ ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠΌ сСчСниях ΠΌΠΎΠ΄Π΅Π»ΠΈ, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹ΠΉ ΡˆΠ°Ρ…ΠΌΠ°Ρ‚Π½Ρ‹ΠΌ располоТСниСм гидравличСски Π½Π΅ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ‡Π½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΠΊ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования мСТкассСтного взаимодСйствия тСплоноситСля ΠΌΠ΅ΠΆΠ΄Ρƒ сосСдними ВВБА-Π’ ΠΈ ВВБА-Π’.mod.2 приняты для практичСского использования Π² АО Β«ΠžΠšΠ‘Πœ Африкантов» ΠΏΡ€ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ΅ тСплотСхничСской надСТности Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Π·ΠΎΠ½ Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π’Π’Π­Π  ΠΈ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ Π² Π±Π°Π·Ρƒ Π΄Π°Π½Π½Ρ‹Ρ… для Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π³ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ (CFD-ΠΊΠΎΠ΄ΠΎΠ²) ΠΈ Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ поячССчного расчСта Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ Π·ΠΎΠ½Ρ‹ Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ²

    APPLICATION OF MULTIHOLE PRESSURE PROBE FOR RESEARCH OF COOLANT VELOCITY PROFILE IN NUCLEAR REACTOR FUEL ASSEMBLIES

    No full text
    Development of heat and mass transfer intensifiers is a major engineering task in the design of new and modernization of existing fuel assemblies. These devices create lateral mass flow of coolant. Design of intensifiers affects both the coolant mixing and the hydraulic resistance. The aim of this work is to develop a methodology of measuring coolant local velocity in the fuel assembly models with different mixing grids. To solve the problems was manufactured and calibrated multihole pressure probe. The air flow velocity measuring method with multihole pressure probe was used in the experimental studies on the coolant local hydrodynamics in fuel assemblies with mixing grids. Analysis of the coolant lateral velocity vector fields allowed to study the formation of the secondary vortex flows behind the mixing grids, and to determine the basic laws of coolant flow in experimental models. Quantitative data on the coolant flow velocity distribution obtained with a multihole pressure probe make possible to determine the magnitude of the flow lateral velocities in fuel rod gaps, as well as to determine the distance at which damping occurs during mixing

    Investigation of Coolant Local Hydrodynamics in the Mixed Core of the VVER Reactor

    Get PDF
    The article presents the results of experimental studies of the local hydrodynamics of the coolant flow in the mixed core of the VVER reactor, consisting of the TVSA-T and TVSA-T mod.2 fuel assemblies. Modeling of the flow of the coolant flow in the fuel rod bundle was carried out on an aerodynamic test stand. The research was carried out on a model of a fragment of a mixed core of a VVER reactor consisting of one TVSA-T segment and two segments of the TVSA-T.mod2. The flow pressure fields were measured with a five-channel pneumometric probe. The flow pressure field was converted to the direction and value of the coolant velocity vector according to the dependencies obtained during calibration. To obtain a detailed data of the flow, a characteristic cross-section area of the model was selected, including the space cross flow between fuel assemblies and four rows of fuel rods of each of the TVSA fuel assemblies. In the framework of this study the analysis of the spatial distribution of the projections of the velocity of the coolant flow was fulfilled that has made it possible to pinpoint regularities that are intrinsic to the coolant flowing around spacing, mixing and combined spacing grates of the TVSA. Also, the values of the transverse flow of the coolant caused by the flow along hydraulically nonidentical grates were determined and their localization in the longitudinal and cross sections of the experimental model was revealed. Besides, the effect of accumulation of hydrodynamic flow disturbances in the longitudinal and cross sections of the model caused by the staggered arrangement of hydraulically non-identical grates was determined. The results of the study of the coolant cross flow between fuel assemblies interaction, i.e. between the adjacent TVSA-T and TVSA-T mod.2 fuel assemblies were adopted for practical use in the JSC of β€œAfrikantov OKB Mechanical Engineering” for assessing the heat engineering reliability of VVER reactor cores; also, they were included in the database for verification of computational hydrodynamics programs (CFD codes) and for detailed cell-based calculation of the reactor core
    corecore