8 research outputs found
The removal of the trivalent chromium from the leather tannery wastewater: the optimisation of the electro-coagulation process parameters.
The capacity of the electro-coagulation (EC) process for the treatment of the wastewater containing Cr3+, resulting from a leather tannery industry placed in Medellin (Colombia), was evaluated. In order to assess the effect of some parameters, such as: the electrode type (Al and/or Fe), the distance between electrodes, the current density, the stirring velocity, and the initial Cr3+ concentration on its efficiency of removal (%RCr+3), a multifactorial experimental design was used. The %RCr3+ was defined as the response variable for the statistical analysis. In order to optimise the operational values for the chosen parameters, the response surface method (RSM) was applied. Additionally, the Biological Oxygen Demand (BOD5), the Chemical Oxygen Demand (COD), and the Total Organic Carbon (TOC) were monitored during the EC process. The electrodes made of aluminium appeared to be the most effective in the chromium removal from the wastewater under study. At pH equal to 4.52 and at 28 degrees C, the optimal conditions of Cr3+ removal using the EC process were found, as follows: the initial Cr3+ concentration=3,596 mg/L, the electrode gap=0.5 cm, the stirring velocity=382.3 rpm, and the current density=57.87 mA/cm2. At those conditions, it was possible to reach 99.76% of Cr3+ removal, and 64% and 61% of mineralisation (TOC) and COD removal, respectively. A kinetic analysis was performed in order to verify the response capacity of the EC process at optimised parameter values
Optimization and toxicity assessment of a combined electrocoagulation, H2O2/Fe2+/UV and activated carbon adsorption for textile wastewater treatment
In this study, the potential application of sequential Electrocoagulation + Fenton (F) or Photo-Fenton (PF) + Active carbon adsorption (EC + F/PF + AC) processes were analyzed as alternatives for the treatment of an industrial textile wastewater resulting from an industrial facility located in Medell铆n (Colombia). In order to maximize the organic matter degradation, each step of the treatment was optimized using the Response Surface Methodology. At first, the optimal performance of EC was achieved with Fe electrodes operating at pH = 7, jEC = 10 mA/cm2 and 60 rpm, during 10 min of electrolysis. At these conditions, EC let to remove 94% of the dye's color, 56% of the COD and 54% of the TOC. Next, sequentially applied Fenton or photo-Fenton process (i.e., EC + F/PF), operating at the optimized conditions (pH = 4.3, [Fe2+] = 1.1 mM, [H2O2] = 9.7 mM, stirring velocity = 100 rpm and reaction time = 60 min.), improved the quality of the treated effluent. The EC + F let to achieve total color reduction, as well as COD and TOC removals of 72 and 75%, respectively. The EC + PF reached 100% of color, 76% of COD and 78% of TOC reductions. The EC + F/PF processes were more efficient than EC in elimination of low molecular weight (<5 kDa) compounds from wastewater. Moreover, the BOD5/COD ratio increased from 0.21 to 0.42 and from 0.21 to 0.46 using EC + F and EC + PF processes, respectively. However, EC + F/PF were not fully effective for the removal of acute toxicity to Artemia salina: 20% and 60% of reduction in toxicity using EC + F and EC + PF, respectively, comparing to very toxic (100%) raw textile wastewater. Thus, activated carbon adsorption was applied as an additional step to complete the treatment. After AC adsorption, the acute toxicity decreased to 10% and 0% using EC + F and EC + PF, respectively. The total operational costs, including chemical reagents, electrodes, energy consumption and sludge disposal, were of 1.65 USD/m3 and 2.3 USD/m3 for EC + F and EC + PF, respectively. 漏 2018 Elsevier B.V
Optimization of sequential chemical coagulation - electro-oxidation process for the treatment of an industrial textile wastewater
In this study, the sequential Chemical Coagulation-Electro-Oxidation (CC-EO) process was proposed as an alternative for the treatment of an industrial textile wastewater. Complete characterization of the effluent was made in the terms of its organic load (Total Organic Carbon (TOC), Chemical Oxygen Demand (COD), Biological Oxygen Demand (BOD5)), biodegradability (BOD5/COD ratio) and solids content (total solids and turbidity). For CC, the jar test was used to determine both the most favorable dosage of coagulant and pH of the process (i.e., 600 mg/L of Al2(SO4)3 at pH of 9.3). CC let to remove ca. 93% of turbidity, 53% of COD and 24% of TOC. It also increased BOD5/COD ratio of raw textile wastewater from 0.16 to 0.27. Next, CC effluent was treated by EO. Its performance was optimized using Box-Behnken experimental Design and Response Surface Methodology. The following EO optimal conditions were found: current density = 15 mA/cm2, conductivity = 4.7 mS/cm and pH = 5.6. At these conditions, the sequential CC-EO process removed 100% of color, 93.5% of COD, and 75% of TOC after 45 min of electrolysis with an estimated operating cost of 6.91 USD/m3. Moreover, the CC-EO process yield a highly oxidized (Average Oxidation State, AOS = 2.3) and biocompatible (BOD5/COD >0.4) effluent. 漏 2018 Elsevier Lt
The electrochemical elimination of coliforms from water using BBD/Ti or graphite anodes: A comparative study
The elimination of total and fecal coliforms, from raw surface water, was carried out by electrochemical oxidation using either boron doped diamond (BDD/Ti) or graphite (GP) anodes, in a chloride-free medium. The optimal values of the operation parameters, maximizing the coliform elimination percentage, were determined using statistical experimental design. The current density ( j: 2-20 mA/cm2), the conductivity (s: 500-900 碌S/cm) and the anode materials (An) were considered as variables to perform the Box-Behnken experimental design together with the response surface methodology analysis for optimization. The statistical analysis indicated that, in the evaluated range, the disinfection efficiency increased with an increase in j and decreased with an increase in s. The following optimal conditions for the elimination of total and fecal coliforms were found: j: 10 mA/cm2, s: 500 碌S/cm and BDD/Ti used as anode material. The BDD/Ti electrode let to achieve complete coliform elimination after ca. 20 min of reaction while the GP one needed ca. 27 min. In water treated with both BDD/Ti and GP anode, after 7 days, any coliforms growth was observed. As a result of the oxidation process, the total organic carbon and nitrite concentration decreased while nitrate concentration increased. 漏 IWA Publishing 2018