29 research outputs found

    BRCA1 185delAG Mutation Enhances Interleukin-1 β

    Get PDF
    Familial history remains the strongest risk factor for developing ovarian cancer (OC) and is associated with germline BRCA1 mutations, such as the 185delAG founder mutation. We sought to determine whether normal human ovarian surface epithelial (OSE) cells expressing the BRCA1 185delAG mutant, BRAT, could promote an inflammatory phenotype by investigating its impact on expression of the proinflammatory cytokine, Interleukin-1β (IL-1β). Cultured OSE cells with and without BRAT were analyzed for differential target gene expression by real-time PCR, western blot, ELISA, luciferase reporter, and siRNA assays. We found that BRAT cells expressed increased cellular and secreted levels of active IL-1β. BRAT-expressing OSE cells exhibited 3-fold enhanced IL-1β mRNA expression, transcriptionally regulated, in part, through CREB sites within the (−1800) to (−900) region of its promoter. In addition to transcriptional regulation, BRAT-mediated IL-1β expression appears dualistic through enhanced inflammasome-mediated caspase-1 cleavage and activation of IL-1β. Further investigation is warranted to elucidate the molecular mechanism(s) of BRAT-mediated IL-1β expression since increased IL-1β expression may represent an early step contributing to OC

    Cross-Species Array Comparative Genomic Hybridization Identifies Novel Oncogenic Events in Zebrafish and Human Embryonal Rhabdomyosarcoma

    Get PDF
    Human cancer genomes are highly complex, making it challenging to identify specific drivers of cancer growth, progression, and tumor maintenance. To bypass this obstacle, we have applied array comparative genomic hybridization (array CGH) to zebrafish embryonal rhabdomyosaroma (ERMS) and utilized cross-species comparison to rapidly identify genomic copy number aberrations and novel candidate oncogenes in human disease. Zebrafish ERMS contain small, focal regions of low-copy amplification. These same regions were commonly amplified in human disease. For example, 16 of 19 chromosomal gains identified in zebrafish ERMS also exhibited focal, low-copy gains in human disease. Genes found in amplified genomic regions were assessed for functional roles in promoting continued tumor growth in human and zebrafish ERMS – identifying critical genes associated with tumor maintenance. Knockdown studies identified important roles for Cyclin D2 (CCND2), Homeobox Protein C6 (HOXC6) and PlexinA1 (PLXNA1) in human ERMS cell proliferation. PLXNA1 knockdown also enhanced differentiation, reduced migration, and altered anchorage-independent growth. By contrast, chemical inhibition of vascular endothelial growth factor (VEGF) signaling reduced angiogenesis and tumor size in ERMS-bearing zebrafish. Importantly, VEGFA expression correlated with poor clinical outcome in patients with ERMS, implicating inhibitors of the VEGF pathway as a promising therapy for improving patient survival. Our results demonstrate the utility of array CGH and cross-species comparisons to identify candidate oncogenes essential for the pathogenesis of human cancer

    The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospira crunogena XCL-2

    Get PDF
    Presented here is the complete genome sequence of Thiomicrospira crunogena XCL-2, representative of ubiquitous chemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-sea hydrothermal vents. This gammaproteobacterium has a single chromosome (2,427,734 base pairs), and its genome illustrates many of the adaptations that have enabled it to thrive at vents globally. It has 14 methyl-accepting chemotaxis protein genes, including four that may assist in positioning it in the redoxcline. A relative abundance of coding sequences (CDSs) encoding regulatory proteins likely control the expression of genes encoding carboxysomes, multiple dissolved inorganic nitrogen and phosphate transporters, as well as a phosphonate operon, which provide this species with a variety of options for acquiring these substrates from the environment. Thiom. crunogena XCL-2 is unusual among obligate sulfur-oxidizing bacteria in relying on the Sox system for the oxidation of reduced sulfur compounds. The genome has characteristics consistent with an obligately chemolithoautotrophic lifestyle, including few transporters predicted to have organic allocrits, and Calvin-Benson-Bassham cycle CDSs scattered throughout the genome

    \u3cem\u3eThiomicrospira crunogena\u3c/em\u3e: A Chemoautotroph With a Carbon Concentrating Mechanism

    Get PDF
    Gammaproteobacterium Thiomicrospira crunogena thrives at deep-sea vents despite extreme oscillations in the environmental supply of dissolved inorganic carbon (DIC; =CO2 + HCO3- + CO3-2). Survival in this habitat is likely aided by the presence of a carbon concentrating mechanism (CCM). Though CCMs are well-documented in cyanobacteria, based on this study T. crunogena is the first chemolithoautotroph to have a physiologically characterized CCM. T. crunogena is capable of rapid growth in the presence of 20 micrometers DIC, has the ability to use both extracellular HCO3- and CO2, and generates intracellular DIC concentrations 100-fold greater than extracellular, all of which are consistent with a CCM analogous to those present in cyanobacteria. Interestingly, however, the T.crunogena genome lacks apparent orthologs of many of the components of the cyanobacteria CCM (e.g., HCO3- transporters). However, despite this lack, several candidate genes were identified during genome annotation as likely to play a role in DIC uptake and fixation (three carbonic anhydrase genes: alpha-CA, beta-CA, and csoSCA, as well as genes encoding three RubisCO enzymes: cbbLS, CScbbLS, and cbbM, which encode a cytoplasmic form I RubisCO, a carboxysomal form I RubisCO, and a form II RubisCO, respectively). In order to clarify their possible roles in DIC uptake and fixation, alpha-CA, beta-CA and csoSCA transcription by low-DIC and high-DIC T. crunogena were assayed by qRT PCR, heterologous expression in E. coli, and potentiometric assays of low-DIC and high-DIC T. crunogena. Transcription of alpha-CA and beta-CA were not sensitive to the DIC concentration available during growth. When overexpressed in E.coli, carbonic anhydrase activity was detectable, and it was possible to measure the effects of the classical carbonic anhydrase inhibitors ethoxyzolamide and acetazolamide, as well as dithiothreitol (DTT; recently determined to be a carboxysomal CA inhibitor). The alpha-CA was sensitive to both of the classical inhibitors, but not DTT. Beta-CA was insensitive to all inhibitors tested, and the carboxysomal carbonic anhydrase was sensitive to both ethoxyzolamide and DTT. The observation that the CA activity measureable potentiometrically with intact T. crunogena cells is sensitive to classical inhibitors, but not DTT, strongly suggests the alpha-CA is extracellular. The presence of carbonic anhydrase activity in crude extracts of high-DIC cells that was resistant to classical inhibitors suggests that beta-CA may be more active in high-DIC cells. Incubating cells with ethoxyzolamide (which permeates cells rapidly) resulted in inhibition of carbon fixation, but not DIC uptake, while incubation with acetazolamide (which does not permeate cells rapidly) had no apparent effect on either carbon fixation or DIC uptake. The observations that inhibition of alpha-CA has no effect on DIC uptake and fixation, and that the beta-CA is not transcribed more frequently under low-DIC conditions, make it unlikely that either play a role in DIC uptake and fixation in low-DIC cells. Further studies are underway to determine the roles of alpha-CA and beta-CA in T. crunogena. To assay the entire genome for genes transcribed more frequently under low-DIC conditions, and therefore likely to play a role in the T. crunogena CCM, oligonucleotide arrays were fabricated using the T. crunogena genome sequence. RNA was isolated from cultures grown in the presence of both high (50 mM) and low (0.05 mM) concentrations of DIC, directly labeled with cy5 fluorophore, and hybridized to microarrays. Genes encoding the three RubisCO enzymes present in this organism demonstrated differential patterns of transcription consistent with what had been observed previously in Hydrogenovibrio marinus. Genes encoding two conserved hypothetical proteins were also found to be transcribed more frequently under low-DIC conditions, and this transcription pattern was verified by qRT-PCR. Knockout mutants are currently being generated to determine whether either gene is necessary for growth under low-DIC conditions. Identifying CCM genes and function in autotrophs beyond cyanobacteria will serve as a window into the physiology required to flourish in microbiallydominated ecosystems where noncyanobacterial primary producers dominate

    Expression and Function of Four Carbonic Anhydrase Homologs in the Deep-Sea Chemolithoautotroph Thiomicrospira crunogena▿

    Full text link
    The hydrothermal vent chemolithoautotroph Thiomicrospira crunogena grows rapidly in the presence of low concentrations of dissolved inorganic carbon (DIC) (= CO2 + HCO3− + CO3−2). Its genome encodes α-carbonic anhydrase (α-CA), β-CA, carboxysomal β-like CA (CsoSCA), and a protein distantly related to γ-CA. The purposes of this work were to characterize the gene products, determine whether they were differentially expressed, and identify those that are necessary for DIC uptake and fixation. When expressed in Escherichia coli, CA activity was detectable for α-CA, β-CA, and CsoSCA but not for the γ-CA-like protein. α-CA and CsoSCA but not β-CA were inhibited by sulfonamide inhibitors. CsoSCA was also inhibited by dithiothreitol. When grown under DIC limitation in chemostats, T. crunogena transcribed csoSCA more frequently than when ammonia limited, while genes encoding α-CA and β-CA were not differentially transcribed under these conditions. Cell extracts from T. crunogena grown under both DIC- and ammonia-limited conditions had CA activity that was strongly inhibited by sulfonamides, though extracts from nitrogen-limited cells had some CA activity that was resistant, perhaps due to a higher level of β-CA activity. Based on predictions from the SignalP software program, subcellular location when expressed in E. coli, and carbonic anhydrase assays conducted on intact T. crunogena cells, α-CA is located in the periplasm. However, inhibition of α-CA by acetazolamide had only a minor impact on rates of DIC uptake or fixation. Conversely, inhibition of CsoSCA with ethoxyzolamide inhibited carbon fixation but not DIC uptake, consistent with this enzyme functioning to facilitate DIC interconversion and fixation within carboxysomes

    Genomic Amplification of an Endogenous Retrovirus in Zebrafish T-Cell Malignancies

    Get PDF
    Genomic instability plays a crucial role in oncogenesis. Somatically acquiredmutations can disable some genes and inappropriately activate others. In addition, chromosomal rearrangements can amplify, delete, or even fuse genes, altering their functions and contributing to malignant phenotypes. Using array comparative genomic hybridization (aCGH), a technique to detect numeric variations between different DNA samples, we examined genomes from zebrafish (Danio rerio) T-cell leukemias of three cancerprone lines. In all malignancies tested, we identified recurring amplifications of a zebrafish endogenous retrovirus. This retrovirus, ZFERV, was first identified due to high expression of proviral transcripts in thymic tissue from larval and adult fish.We confirmed ZFERV amplifications by quantitative PCR analyses of DNA from wild-type fish tissue and normal and malignant D. rerio T cells. We also quantified ZFERV RNA expression and found that normal and neoplastic T cells both produce retrovirally encoded transcripts, but most cancers show dramatically increased transcription. In aggregate, these data imply that ZFERV amplification and transcription may be related to T-cell leukemogenesis. Based on these data and ZFERV’s phylogenetic relation to viruses of the murine-leukemia-related virus class of gammaretroviridae, we posit that ZFERV may be oncogenic via an insertional mutagenesis mechanism

    BRCA1 185delAG Mutation Enhances Interleukin-1β Expression in Ovarian Surface Epithelial Cells

    Full text link
    Familial history remains the strongest risk factor for developing ovarian cancer (OC) and is associated with germline BRCA1 mutations, such as the 185delAG founder mutation. We sought to determine whether normal human ovarian surface epithelial (OSE) cells expressing the BRCA1 185delAG mutant, BRAT, could promote an inflammatory phenotype by investigating its impact on expression of the proinflammatory cytokine, Interleukin-1β (IL-1β). Cultured OSE cells with and without BRAT were analyzed for differential target gene expression by real-time PCR, western blot, ELISA, luciferase reporter, and siRNA assays. We found that BRAT cells expressed increased cellular and secreted levels of active IL-1β. BRAT-expressing OSE cells exhibited 3-fold enhanced IL-1β mRNA expression, transcriptionally regulated, in part, through CREB sites within the (−1800) to (−900) region of its promoter. In addition to transcriptional regulation, BRAT-mediated IL-1β expression appears dualistic through enhanced inflammasome-mediated caspase-1 cleavage and activation of IL-1β. Further investigation is warranted to elucidate the molecular mechanism(s) of BRAT-mediated IL-1β expression since increased IL-1β expression may represent an early step contributing to OC

    BRCA1 185delAG Mutation Enhances Interleukin-1β Expression in Ovarian Surface Epithelial Cells

    Full text link
    Familial history remains the strongest risk factor for developing ovarian cancer (OC) and is associated with germline BRCA1 mutations, such as the 185delAG founder mutation. We sought to determine whether normal human ovarian surface epithelial (OSE) cells expressing the BRCA1 185delAG mutant, BRAT, could promote an inflammatory phenotype by investigating its impact on expression of the proinflammatory cytokine, Interleukin-1β (IL-1β). Cultured OSE cells with and without BRAT were analyzed for differential target gene expression by real-time PCR, western blot, ELISA, luciferase reporter, and siRNA assays. We found that BRAT cells expressed increased cellular and secreted levels of active IL-1β. BRAT-expressing OSE cells exhibited 3-fold enhanced IL-1β mRNA expression, transcriptionally regulated, in part, through CREB sites within the (−1800) to (−900) region of its promoter. In addition to transcriptional regulation, BRAT-mediated IL-1β expression appears dualistic through enhanced inflammasome-mediated caspase-1 cleavage and activation of IL-1β. Further investigation is warranted to elucidate the molecular mechanism(s) of BRAT-mediated IL-1β expression since increased IL-1β expression may represent an early step contributing to OC
    corecore