20 research outputs found

    Ethylamine

    No full text
    Etyloamina (EA) jest bezbarwną cieczą (w temperaturze niższej od 16,6 ºC), o ostrym amoniakalnym zapachu lub zapachu ryb oraz słonym smaku. Etyloamina znalazła zastosowanie w syntezie chemicznej i produkcji leków, jako półprodukt do produkcji pestycydów, herbicydów triazynowych (np. atrazyny i symazyny), surfaktantów (np. dimetyloetylotriazonu), przyspieszaczy, inhibitorów korozji, etyloamino-etanolu, 1,3-dietylotiomocznika, 4-etylomorfoliny, a także w przemyśle barwników i garbników oraz rafinacji ropy naftowej, gdzie występuje jako produkt pośredni. Narażenie inhalacyjne na pary EA powoduje podrażnienie błon śluzowych układu oddechowego charakteryzujące się bólem gardła, kaszlem, bólami w klatce piersiowej, dusznościami, sinicą i obrzękiem płuc. Pary EA wywołują podrażnienia lub oparzenia chemiczne skóry i oczu. Wielkość najniższego stężenia działającego nie jest znana. Stężony roztwór EA w kontakcie ze skórą powoduje oparzenia, nawet jeśli roztwór zostanie zmyty wodą z mydłem w ciągu kilku minut. W przypadku kontaktu ciekłej EA z oczami obserwowano martwicę rogówki. Głównym skutkiem przewlekłego narażenia na pary EA jest działanie drażniące na oczy. Obserwowano skutki działania drażniącego na oczy, charakteryzujące się zmętnieniem rogówki i obrzękiem u pracowników narażonych na etyloaminę. Nie podano wielkości stężenia EA w powietrzu środowiska pracy. U ludzi narażonych zawodowo na etyloaminy, tj. dietyloaminę, trietyloaminę i etyloaminę, występowały zaburzenia widzenia charakteryzujące się zamazanym, o zatartych konturach, zamglonym widzeniem i niebieskoczerwonym widzeniem. Nie wyjaśniono jednoznacznie, czy czysta etyloamina powoduje takie działanie. EA można zaliczyć do substancji szkodliwych. Wyznaczona wartość LD50 dla szczurów po podaniu dożołądkowym wynosi 400 mg/kg m.c., natomiast po podaniu na skórę – 390 mg/kg. Pary EA wykazywały słabą toksyczność u zwierząt w eksperymentach inhalacyjnych: LC50 wyznaczono na poziomie 2300 mg/m3 dla ssaka, natomiast na poziomie 10 000 mg/m3 w czasie 1 h dla szczura. Wyznaczona wartość RD50 dla samców myszy szczepu Swiss OF1 wynosi 278 mg/m3. Powtarzane narażenie na pary EA powoduje działanie drażniące na układ oddechowy u zwierząt. W 24- tygodniowym eksperymencie inhalacyjnym przeprowadzonym na szczurach nie obserwowano działania drażniącego etyloaminy o stężeniu 18 lub 180 mg/m3 na nabłonek nosa. W innym eksperymencie inhalacyjnym przeprowadzonym w latach 50. obserwowano działanie kardiotoksyczne EA przejawiające się uszkodzeniem mięśnia sercowego, a także działanie drażniące charakteryzujące się obrzękiem błony śluzowej nosa, przekrwieniem, występowaniem wydzieliny zapalnej oraz podrażnieniem oczu manifestującym się licznymi nadżerkami nabłonka, obrzękiem rogówki i migotki już przy stężeniu 90 mg/m3. Nie są znane inne badania naukowe, które zweryfikowałyby uzyskane w tym eksperymencie wyniki. Przyjmując działanie drażniące związku za główny efekt krytyczny, za podstawę ustalenia wartości NDS uznano wartość RD50 wyznaczoną w badaniach na myszach. Przyjmując wartość 1/30 RD50 zalecaną przez higienistów amerykańskich do ustalenia wartości NDS, jako wartość NDS etyloaminy należy przyjąć ok. 9,4 mg/m3. Ze względu na działanie drażniące etyloaminy proponuje się ustalenie wartości NDSCh na poziomie 18 mg/m3 (2 • NDS). Zaleca się oznakowanie substancji symbolem „Sk” (substancja wchłania się przez skórę), ponieważ wyznaczona wartość LD50s jest mniejsza niż 1000 mg/kg m.c. i wynosi dla królika 390 mg/kg.Ethylamine (CAS number: 75-04-7), (synonym: aminoethane) is a colorless, flammable liquid or gas, depending on the ambient temperature, with an ammonia-like odor. Ethylamine is a dangerous fire hazard. Ethylamine is used in solvent extraction; organic synthesis; as a dye intermediate; as a stabilizer for rubber latex; in petroleum refining; and in the manufacture of detergents, photographic dyes, emulsifying agents, and medicinal products. Ethylamine is irritating to both the skin and eyes of test animals. The oral LD50 in rats is 400 mg/kg and the dermal LD50 in rabbits is 390 mg/kg. The RD50 (concentration producing a 50% decrease in respiration rate) in mice was 278 mg/m3 (151 ppm). Rabbits exposed 7 hours/day, 5 days/week for 6 weeks at 90 mg/m3 (50 ppm) ethylamine experienced irritation of the lungs and eyes. The lung lesions included peribronchitis and pneumonitis with thickening of small blood vessels. The ocular changes involved multiple epithelial erosions and edema of the cornea. Focal muscular degeneration of the heart was seen in some rabbits. Corneal and heart changes were not seen at 180 mg/m3 (100 ppm); however, the kidneys of this group showed slight to moderate parenchymatous degeneration. Rats exposed 6 hours/day, 5 days/week for 24 weeks at 18 mg/m3 or 180 mg/m3 (10 or 100 ppm) showed no adverse effects. In the same study, at 900 mg/m3 (500 ppm), body weight gains were reduced and inflammatory necrosis and squamous metaplasia were seen in the anterior portions of the nose. Eye irritation and corneal edema have been reported from ethylamine exposure in industry but concentrations of ethylamine have been unknown. Based on the RD50 value of ethylamine MAC–TWA of 9.4 mg/m3 and MAC-STEL of 18 mg/m3 are recommended to minimize the potential risk of irritation. Skin notation is proposed because of dermal LD50 in rabbits <1000 mg/kg. Notation „I” – irritating substance is recommended

    2-N-Dibutylaminoethanol

    No full text
    2-(Dibutyloamino)etanol (DBAE) jest przezroczystą, bezbarwną cieczą o zapachu aminy. Jest stosowany jako czynnik emulgujący i flotacyjny, absorbent i czynnik dyspergujący, utwardzacz i czynnik sieciujący żywic silikonowych, katalizator w procesie produkcji pianki poliuretanowej, a także dodatek antykorozyjny do olejów i płynów hydraulicznych oraz do produkcji pestycydów i herbicydów karbaminianowych. W dostępnym piśmiennictwie nie znaleziono danych dotyczących ostrych i przewlekłych zatruć ludzi 2-(dibutyloamino) etanolem. Na podstawie wartości medialnych dawek śmiertelnych dla zwierząt 2-(dibutyloamino)etanol można zaklasyfikować jako związek szkodliwy po podaniu dożołądkowym i przez skórę. U zwierząt doświadczalnych 2-(dibutyloamino)etanol wykazuje działanie drażniące na oczy i górne drogi oddechowe oraz jest inhibitorem acetylocholinoesterazy. Wyznaczono dawkę efektywną działania cholinergicznego u szczurów po podaniu dootrzewnowym równą 50 mg/kg m.c. Po dawce tej obserwowano u zwierząt drżenie mięśni, drgawki oraz blokadę połączeń nerwowo-mięśniowych prowadzącą do zatrzymania oddechu. 2-(Dibutyloamino) etanol jest około 10 razy silniejszym inhibitorem acetylocholinoesterazy mózgowej niż dietanoloamina. W doświadczeniu przewlekłym 27-tygodniowym wyznaczono wartość NOAEL działania drażniącego i cholinergicznego dla szczurów narażonych na 2-(dibutyloamino)etanol o stężeniu 156,2 mg/m3 (22 ppm). W Polsce dotychczas nie ustalono wartości normatywów higienicznych 2 (dibutyloamino)etanolu. W ACGIH zaproponowano wartość TLV 2-(dibutyloamino)etanolu równą 3,5 mg/m3. W większości państw europejskich obowiązuje wartość OEL równa 14 mg/m3, jedynie w Finlandii zaproponowano wartość STEL równą 28 mg/m3. Do wyliczenia wartości najwyższego dopuszczalnego stężenia (NDS) 2-(dibutyloamino)etanolu przyjęto wyznaczoną w eksperymencie przewlekłym wartość NOAEL równą 156,2 mg/m3 (22 ppm) oraz łączny współczynnik niepewności równy 12. Proponuje się przyjęcie stężenia 14 mg/m3 2-(dibutyloamino)etanolu za wartość NDS podobnie jak w państwach Unii Europejskiej. Ponieważ działanie drażniące związku obserwuje się, gdy wielkość narażenia jest około 20-krotnie większa od wyliczonej wartości NDS, dlatego nie proponuje się ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh). Dodatkowo proponuje się oznakowanie substancji w wykazie NDS literami „Sk” – substancja wchłaniania się przez skórę. Nie ma podstaw do ustalenia wartości dopuszczalnego stężenia w materiale biologicznym (DSB) 2-(dibutyloamino)etanolu.2-N-Dibutylaminoethanol (DBAE) is a colorless, combustible liquid with a faint amine-like odor. DBAE is used in industry as an emulsifying, flotation, and curing agent; dispersant and absorbent. DBAE produced necrosis within 24 hours when applied to the skin of rabbits, and when instilled in the eye of rabbits, it produced corneal necrosis. DBAE, as well as other alkyl-substituted 2-aminoethanols, inhibits cholinesterase in vitro. DBAE has been shown to produce convulsions and neuromuscular blockage resulting in respiratory arrest in rats. Other effects of DBAE exposure include increased gastric motility and secretory activity, decreased respiratory and heart rates, shedding of bloody tears, and excessive salivation. Exposure of 50 rats, 6 hours/day for 27 weeks at 156.2 mg/m3 DBAE resulted in no differences in the variables measured compared with controls. Based on this NOAEL value and three uncertainity factors, the TWA value of 14 mg/m3 is recommended for DBAE. This value is intended to minimize the potential for eye, nasal irritation and cholinergic effects. A Skin notation is recommended, based on the dermal LD50 of DBAE reported for rabbits. Data are not sufficient to recommend STEL

    Ground‐penetrating radar surveys on the Giza Plateau

    No full text

    Shallow Depressions in the Florida Coastal Plain: Karst and Pseudokarst

    No full text
    In Florida, shallow depressions (i.e., depressions \u3c1-2 m in depth) on the land surface are often attributed to sinkhole development. However, it has become evident that there are at least six different mechanisms through which these depressions can form in geologically young cover sediments. These mechanisms include: 1. Cover-subsidence sinkholes over shallow limestone; 2. Suffosion sinkholes over shallow limestone; 3. Cover settlement over shallow shell beds; 4. Large, aeolian deflation areas that resemble “Carolina bays;” 5. Depressions that mimic landforms developed on a shallow paleosol; and 6. Depressions created by pedodiagenesis (i.e., conversion of smectite to kaolinite) in a soil-forming environment. Of these, only the first two appear to represent traditional mechanisms for sinkhole development in eogenetic karst. Cover settlement over shell beds is poorly understood and incorrectly attributed to sinkhole development processes. This type of depression has serious limitations in terms of cover thickness and shell content of the substrate. The last three mechanisms are pseudokarst created by aeolian and soil-forming processes. In this paper we present examples of each and discuss their constraints and evidence

    Shallow Depressions in the Florida Coastal Plain: Karst and Pseudokarst

    Get PDF
    In Florida, shallow depressions (i.e., depressions \u3c1-2 m in depth) on the land surface are often attributed to sinkhole development. However, it has become evident that there are at least six different mechanisms through which these depressions can form in geologically young cover sediments. These mechanisms include: 1. Cover-subsidence sinkholes over shallow limestone; 2. Suffosion sinkholes over shallow limestone; 3. Cover settlement over shallow shell beds; 4. Large, aeolian deflation areas that resemble “Carolina bays;” 5. Depressions that mimic landforms developed on a shallow paleosol; and 6. Depressions created by pedodiagenesis (i.e., conversion of smectite to kaolinite) in a soil-forming environment. Of these, only the first two appear to represent traditional mechanisms for sinkhole development in eogenetic karst. Cover settlement over shell beds is poorly understood and incorrectly attributed to sinkhole development processes. This type of depression has serious limitations in terms of cover thickness and shell content of the substrate. The last three mechanisms are pseudokarst created by aeolian and soil-forming processes. In this paper we present examples of each and discuss their constraints and evidence

    Forming mechanisms-related residual stress development in single point incremental forming

    No full text
    The mechanical properties of a component are significantly influenced by the prevailing residual stress state. A deliberate induction of compressive residual stresses or a reduction of tensile residual stresses can improve the component properties, such as fatigue strength. Single point incremental forming is a flexible manufacturing process to produce complex shaped parts by the computerized numerically controlled movement of a hemispherical forming tool. Because the process parameters can be locally adjusted it is possible to influence the residual stress state of the component. The influence of the forming mechanisms bending, shearing and membrane stretching, as well as the role of the hydrostatic compression on the residual stress state is widely unknown. This work aims to fill this gap. Therefore, linear grooves are formed into AA5083 sheets in a single-stage incremental forming process. The residual stress state of the unclamped sheet is measured on both sides of the groove center by means of X-ray diffraction. The relative intensity of the dominant forming mechanism is adjusted by adapting the relevant process parameters step-down increment Δz and tool radius RTool_{Tool}. The forming mechanisms are analyzed numerically by splitting the total plastic energy into the three forming mechanisms bending, shearing and membrane stretching. The numerical results for bending and membrane stretching could be validated by crystallographic analysis. A shift in the energy ratio of the forming mechanism from bending to shearing with increasing relative step-down increment Δz/RToolΔz/R_{Tool} could be observed numerically. The maximum residual stress amplitudes are found for Δz/RToolΔz/R_{Tool} < 1. The results indicate that a deliberate residual stress state can be induced by adjusting the dominant forming mechanism of the process
    corecore