6 research outputs found
Dissecting Domain-Specific Evolutionary Pressure Profiles of Transient Receptor Potential Vanilloid Subfamily Members 1 to 4
The transient receptor potential vanilloid family includes four ion channels-TRPV1, TRPV2, TRPV3 and TRPV4-that are represented within the vertebrate subphylum and involved in several sensory and physiological processes. These channels are related to adaptation to the environment, and probably under strong evolutionary pressure. Using multiple sequence alignments as source for evolutionary, bioinformatics and statistical analysis, we have analyzed the evolutionary profiles for TRPV1, TRPV2, TRPV3 and TRPV4. The evolutionary pressure exerted over vertebrate TRPV2 sequences compared to the other channels argues for a positive selection profile for TRPV2 compared to TRPV1, TRPV3 and TRPV4. We have analyzed the selective pressure on specific protein domains, observing a common selective pressure trend for the common TRPV scaffold, consisting of the ankyrin repeat domain, the membrane proximal domain, the transmembrane domain, and the TRP domain. Through a more detailed analysis we have identified evolutionary constraints involved in the subunit contact at the transmembrane domain level. Performing evolutionary comparison, we have translated specific channel structural information such as the transmembrane topology, and the interaction between the membrane proximal domain and the TRP box. We have also identified potential common regulatory domains among all TRPV1-4 members, such as protein-protein, lipid-protein and vesicle trafficking domains
Recommended from our members
What do we know about the transient receptor potential vanilloid 2 (TRPV2) ion channel?
Transient receptor potential (TRP) ion channels are emerging as a new set of membrane proteins involved in a vast array of cellular processes and regulated by a large number of physical and chemical stimuli, which involves them with sensory cell physiology. The vanilloid TRP subfamily (TRPV) named after the vanilloid receptor 1 (TRPV1) consists of six members, and at least four of them (TRPV1–TRPV4) have been related to thermal sensation. One of the least characterized members of the TRP subfamily is TRPV2. Although initially characterized as a noxious heat sensor, TRPV2 now seems to have little to do with temperature sensing but a much more complex physiological profile. Here we review the available information and research progress on the structure, physiology and pharmacology of TRPV2 in an attempt to shed some light on the physiological and pharmacological deorphanization of TRPV2.Molecular and Cellular Biolog
The TRPV4 channel links calcium influx to DDX3X activity and viral infectivity
Ion channels are well placed to transduce environmental cues into signals used by cells to generate a wide range of responses, but little is known about their role in the regulation of RNA metabolism. Here we show that the TRPV4 cation channel binds the DEAD-box RNA helicase DDX3X and regulates its function. TRPV4-mediated Ca2+ influx releases DDX3X from the channel and drives DDX3X nuclear translocation, a process that involves calmodulin (CaM) and the CaM-dependent kinase II. Genetic depletion or pharmacological inhibition of TRPV4 diminishes DDX3X-dependent functions, including nuclear viral export and translation. Furthermore, TRPV4 mediates Ca2+ influx and nuclear accumulation of DDX3X in cells exposed to the Zika virus or the purified viral envelope protein. Consequently, targeting of TRPV4 reduces infectivity of dengue, hepatitis C and Zika viruses. Together, our results highlight the role of TRPV4 in the regulation of DDX3X-dependent control of RNA metabolism and viral infectivity
NMR Investigation of Structures of G-Protein Coupled Receptor Folding Intermediates
Folding of G-protein coupled receptors (GPCRs) according to the two-stage model (Popot et al., Biochemistry 29(1990), 4031) is postulated to proceed in 2 steps: Partitioning of the polypeptide into the membrane followed by diffusion until native contacts are formed. Herein we investigate conformational preferences of fragments of the yeast Ste2p receptor using NMR. Constructs comprising the first, the first two and the first three transmembrane (TM) segments, as well as a construct comprising TM1-TM2 covalently linked to TM7 were examined. We observed that the isolated TM1 does not form a stable helix nor does it integrate well into the micelle. TM1 is significantly stabilized upon interaction with TM2, forming a helical hairpin reported previously (Neumoin et al., Biophys. J. 96(2009), 3187), and in this case the protein integrates into the hydrophobic interior of the micelle. TM123 displays a strong tendency to oligomerize, but hydrogen exchange data reveal that the center of TM3 is solvent exposed. In all GPCRs so-far structurally characterized TM7 forms many contacts with TM1 and TM2. In our study TM127 integrates well into the hydrophobic environment, but TM7 does not stably pack against the remaining helices. Topology mapping in microsomal membranes also indicates that TM1 does not integrate in a membrane-spanning fashion, but that TM12, TM123 and TM127 adopt predominantly native-like topologies. The data from our study would be consistent with the retention of individual helices of incompletely synthesized GPCRs in the vicinity of the translocon until the complete receptor is released into the membrane interior
Identification and characterization of the TRPVs protein-protein interactions, a comprehensive approach to elucidate TRPVs function and regulation
Los
canales
TRPV
son
canales
de
cationes
que
participan
en
la
homeostasis
del
calcio
con
propiedades
de
activación
polimodales.
Los
TRPVs
regulan
los
niveles
de
calcio
intracelular
y
promueven
una
respuesta
celular
precisa
a
varios
estímulos
físico-‐químicos,
lo
que
permite
a
la
célula
adaptarse
al
entorno
cambiante.
La
subfamilia
TRPV
contiene
6
miembros,
clasificados
en
dos
grupos
atendiendo
a
su
nivel
de
homología:
TRPV1-‐4
y
TRPV5-‐
6.
TRPV1-‐4
son
canales
no
selectivos
de
calcio
que
participan
principalmente
en
termocepción,
mecanocepción
y
la
transducción
del
dolor.
Los
TRPV1-‐4
son
de
un
especial
interés
biomédico,
ya
que
se
han
asociado
con
un
amplio
espectro
de
estados
patológicos,
desde
distrofias
musculares
o
neuronales
a
cáncer.
Esta
tesis
tiene
como
objetivo
ampliar
el
conocimiento
sobre
la
regulación
del
subgrupo
TRPV1-‐4.
En
primer
lugar,
hemos
recopilado
la
información
disponible
por
medio
de
una
revisión
basada
en
TRPV2,
uno
de
los
miembros
menos
descritos
y
más
interesante
de
la
subfamilia
TRPV.
El
análisis
de
la
secuencia
primaria
y
estudio
de
conservación
de
los
dominios
TRPV
revelaron
que
los
canales
TRPV1-‐4
comparten
mecanismos
básicos
de
funcionamiento,
como
el
plegado
y
el
transporte
a
membrana.
Usando
TRPV2
como
punto
de
referencia,
hemos
determinado
las
propiedades
de
plegado
y
la
topología
de
este
canal
y
la
importancia
del
dominio
N-‐terminal
distal
para
el
tráfico
de
TRPV2.
Se
les
dio
una
atención
especial
a
las
interacciones
proteína
proteína,
dado
que
los
TRPV
actúan
dentro
de
las
células
formando
complejos.
Hemos
mapeado
la
interacción
con
las
proteínas
SNARE
al
dominio
MPD
de
TRPV1
y
TRPV2
y
el
interactoma
de
los
TRPV1-‐4
se
amplió
por
medio
de
un
doble
híbrido
especifico
de
proteínas
de
membrana
(MYTH)
basado
en
TRPV1,
TRPV2
y
TRPV4.Los
canales
TRPV
son
canales
de
cationes
que
participan
en
la
homeostasis
del
calcio
con
propiedades
de
activación
polimodales.
Los
TRPVs
regulan
los
niveles
de
calcio
intracelular
y
promueven
una
respuesta
celular
precisa
a
varios
estímulos
físico-‐químicos,
lo
que
permite
a
la
célula
adaptarse
al
entorno
cambiante.
La
subfamilia
TRPV
contiene
6
miembros,
clasificados
en
dos
grupos
atendiendo
a
su
nivel
de
homología:
TRPV1-‐4
y
TRPV5-‐
6.
TRPV1-‐4
son
canales
no
selectivos
de
calcio
que
participan
principalmente
en
termocepción,
mecanocepción
y
la
transducción
del
dolor.
Los
TRPV1-‐4
son
de
un
especial
interés
biomédico,
ya
que
se
han
asociado
con
un
amplio
espectro
de
estados
patológicos,
desde
distrofias
musculares
o
neuronales
a
cáncer.
Esta
tesis
tiene
como
objetivo
ampliar
el
conocimiento
sobre
la
regulación
del
subgrupo
TRPV1-‐4.
En
primer
lugar,
hemos
recopilado
la
información
disponible
por
medio
de
una
revisión
basada
en
TRPV2,
uno
de
los
miembros
menos
descritos
y
más
interesante
de
la
subfamilia
TRPV.
El
análisis
de
la
secuencia
primaria
y
estudio
de
conservación
de
los
dominios
TRPV
revelaron
que
los
canales
TRPV1-‐4
comparten
mecanismos
básicos
de
funcionamiento,
como
el
plegado
y
el
transporte
a
membrana.
Usando
TRPV2
como
punto
de
referencia,
hemos
determinado
las
propiedades
de
plegado
y
la
topología
de
este
canal
y
la
importancia
del
dominio
N-‐terminal
distal
para
el
tráfico
de
TRPV2.
Se
les
dio
una
atención
especial
a
las
interacciones
proteína
proteína,
dado
que
los
TRPV
actúan
dentro
de
las
células
formando
complejos.
Hemos
mapeado
la
interacción
con
las
proteínas
SNARE
al
dominio
MPD
de
TRPV1
y
TRPV2
y
el
interactoma
de
los
TRPV1-‐4
se
amplió
por
medio
de
un
doble
híbrido
especifico
de
proteínas
de
membrana
(MYTH)
basado
en
TRPV1,
TRPV2
y
TRPV4.TRPV
channels
are
cation
channels
involved
in
the
calcium
homeostasis
with
polymodal
activation
properties.
They
regulate
intracellular
calcium
levels
promoting
a
fine
tune
cellular
response
to
several
physicochemical
stimuli,
allowing
the
cell
to
adapt
to
the
environmental
changes.
TRPV
subfamily
contains
6
members
classified
in
two
groups
attending
to
their
homology
level:
TRPV1-‐4
and
TRPV5-‐6.
TRPV1-‐4
are
non
selective
calcium
channels
mainly
involved
in
thermoception,
mechanoception
and
pain
transduction.
TRPV1-‐
4
members
are
of
special
biomedical
interest
as
they
have
been
associated
with
a
wide
spectrum
of
pathological
conditions,
from
muscular
or
neuronal
dystrophies
to
cancer.
This
thesis
aims
to
expand
the
knowledge
on
the
regulation
of
TRPV1-‐4
subgroup.
First,
we
have
compiled
the
available
information
in
the
field
by
means
of
a
review
based
on
TRPV2,
one
of
the
least
described
and
more
intriguing
members
of
the
TRPV
subfamily.
Primary
sequence
data
mining
and
conservation
study
of
TRPV
domains
revealed
that
TRPV1-‐4
channels
share
common
basic
working
mechanisms
as
folding
and
trafficking.
Using
TRPV2
as
benchmark,
we
have
determined
the
folding
properties
and
topology
of
this
channel
and
the
importance
of
the
distal
N-‐terminal
domain
for
TRPV2
trafficking.
Protein
protein
interactions
were
given
a
special
attention
as
TRPV
channels
act
within
the
cell
forming
protein
complexes.
We
have
mapped
the
interaction
with
SNARE
proteins
within
the
MPD
domain
of
TRPV1
and
TRPV2
and
the
TRPV1-‐4
interactome
was
further
expanded
by
means
of
a
yeast
two
hybrid
specific
for
membrane
proteins
(MYTH)
based
on
TRPV1,
TRPV2
and
TRPV4
Identification and characterization of the TRPVs protein-protein interactions, a comprehensive approach to elucidate TRPVs function and regulation
Departament responsable de la tesi: Departament de Bioquímica i Biologia Molecular.Los canales TRPV son canales de cationes que participan en la homeostasis del calcio con propiedades de activación polimodales. Los TRPVs regulan los niveles de calcio intracelular y promueven una respuesta celular precisa a varios estímulos físico--químicos, lo que permite a la célula adaptarse al entorno cambiante. La subfamilia TRPV contiene 6 miembros, clasificados en dos grupos atendiendo a su nivel de homología: TRPV1--4 y TRPV5--6. TRPV1--4 son canales no selectivos de calcio que participan principalmente en termocepción, mecanocepción y la transducción del dolor. LosTRPV1--4 son de un especial interés biomédico, ya que se han asociado con un amplio espectro de estados patológicos, desde distrofias musculares o neuronales a cáncer. Esta tesis tiene como objetivo ampliar el conocimiento sobre la regulación del subgrupo TRPV1--4. En primer lugar, hemos recopilado la información disponible por medio de una revisión basada en TRPV2, uno de los miembros menos descritos y más interesante de la subfamilia TRPV. El análisis de la secuencia primaria y estudio de conservación de los dominios TRPV revelaron que los canales TRPV1--4 comparten mecanismos básicos de funcionamiento, como el plegado y el transporte a membrana. Usando TRPV2 como punto de referencia, hemos determinado las propiedades de plegado y la topología de este canal y la importancia del dominio N--terminal distal para el tráfico de TRPV2. Se les dio una atención especial a las interacciones proteína proteína, dado que los TRPV actúan dentro de las células formando complejos. Hemos mapeado la interacción con las proteínas SNARE al dominio MPD de TRPV1 y TRPV2 y el interactoma de los TRPV1--4 se amplió por medio de un doble híbrido especifico de proteínas de membrana (MYTH) basado en TRPV1, TRPV2 y TRPV4.TRPV channels are cation channels involved in the calcium homeostasis with polymodal activation properties. They regulate intracellular calcium levels promoting a fine tune cellular response to several physicochemical stimuli, allowing the cell to adapt to the environmental changes. TRPV subfamily contains 6 members classified in two groups attending to their homology level: TRPV1--4 and TRPV5--6. TRPV1--4 are non selective calcium channels mainly involved in thermoception, mechanoception and pain transduction. TRPV1-- 4 members are of special biomedical interest as they have been associated with a wide spectrum of pathological conditions, from muscular or neuronal dystrophies to cancer. This thesis aims to expand the knowledge on the regulation of TRPV1--4 subgroup. First, we have compiled the available information in the field by means of a review based on TRPV2, one of the least described and more intriguing members of the TRPV subfamily. Primary sequence data mining and conservation study of TRPV domains revealed that TRPV1--4 channels share common basic working mechanisms as folding and trafficking. Using TRPV2 as benchmark, we have determined the folding properties and topology of this channel and the importance of the distal N--terminal domain for TRPV2 trafficking. Protein protein interactions were given a special attention as TRPV channels act within the cell forming protein complexes. We have mapped the interaction with SNARE proteins within the MPD domain of TRPV1 and TRPV2 and the TRPV1--4 interactome was further expanded by means of a yeast two hybrid specific for membrane proteins (MYTH) based on TRPV1, TRPV2 and TRPV4