6 research outputs found

    Dissecting Domain-Specific Evolutionary Pressure Profiles of Transient Receptor Potential Vanilloid Subfamily Members 1 to 4

    Get PDF
    The transient receptor potential vanilloid family includes four ion channels-TRPV1, TRPV2, TRPV3 and TRPV4-that are represented within the vertebrate subphylum and involved in several sensory and physiological processes. These channels are related to adaptation to the environment, and probably under strong evolutionary pressure. Using multiple sequence alignments as source for evolutionary, bioinformatics and statistical analysis, we have analyzed the evolutionary profiles for TRPV1, TRPV2, TRPV3 and TRPV4. The evolutionary pressure exerted over vertebrate TRPV2 sequences compared to the other channels argues for a positive selection profile for TRPV2 compared to TRPV1, TRPV3 and TRPV4. We have analyzed the selective pressure on specific protein domains, observing a common selective pressure trend for the common TRPV scaffold, consisting of the ankyrin repeat domain, the membrane proximal domain, the transmembrane domain, and the TRP domain. Through a more detailed analysis we have identified evolutionary constraints involved in the subunit contact at the transmembrane domain level. Performing evolutionary comparison, we have translated specific channel structural information such as the transmembrane topology, and the interaction between the membrane proximal domain and the TRP box. We have also identified potential common regulatory domains among all TRPV1-4 members, such as protein-protein, lipid-protein and vesicle trafficking domains

    The TRPV4 channel links calcium influx to DDX3X activity and viral infectivity

    Get PDF
    Ion channels are well placed to transduce environmental cues into signals used by cells to generate a wide range of responses, but little is known about their role in the regulation of RNA metabolism. Here we show that the TRPV4 cation channel binds the DEAD-box RNA helicase DDX3X and regulates its function. TRPV4-mediated Ca2+ influx releases DDX3X from the channel and drives DDX3X nuclear translocation, a process that involves calmodulin (CaM) and the CaM-dependent kinase II. Genetic depletion or pharmacological inhibition of TRPV4 diminishes DDX3X-dependent functions, including nuclear viral export and translation. Furthermore, TRPV4 mediates Ca2+ influx and nuclear accumulation of DDX3X in cells exposed to the Zika virus or the purified viral envelope protein. Consequently, targeting of TRPV4 reduces infectivity of dengue, hepatitis C and Zika viruses. Together, our results highlight the role of TRPV4 in the regulation of DDX3X-dependent control of RNA metabolism and viral infectivity

    NMR Investigation of Structures of G-Protein Coupled Receptor Folding Intermediates

    Get PDF
    Folding of G-protein coupled receptors (GPCRs) according to the two-stage model (Popot et al., Biochemistry 29(1990), 4031) is postulated to proceed in 2 steps: Partitioning of the polypeptide into the membrane followed by diffusion until native contacts are formed. Herein we investigate conformational preferences of fragments of the yeast Ste2p receptor using NMR. Constructs comprising the first, the first two and the first three transmembrane (TM) segments, as well as a construct comprising TM1-TM2 covalently linked to TM7 were examined. We observed that the isolated TM1 does not form a stable helix nor does it integrate well into the micelle. TM1 is significantly stabilized upon interaction with TM2, forming a helical hairpin reported previously (Neumoin et al., Biophys. J. 96(2009), 3187), and in this case the protein integrates into the hydrophobic interior of the micelle. TM123 displays a strong tendency to oligomerize, but hydrogen exchange data reveal that the center of TM3 is solvent exposed. In all GPCRs so-far structurally characterized TM7 forms many contacts with TM1 and TM2. In our study TM127 integrates well into the hydrophobic environment, but TM7 does not stably pack against the remaining helices. Topology mapping in microsomal membranes also indicates that TM1 does not integrate in a membrane-spanning fashion, but that TM12, TM123 and TM127 adopt predominantly native-like topologies. The data from our study would be consistent with the retention of individual helices of incompletely synthesized GPCRs in the vicinity of the translocon until the complete receptor is released into the membrane interior

    Identification and characterization of the TRPVs protein-protein interactions, a comprehensive approach to elucidate TRPVs function and regulation

    No full text
    Los canales TRPV son canales de cationes que participan en la homeostasis del calcio con propiedades de activación polimodales. Los TRPVs regulan los niveles de calcio intracelular y promueven una respuesta celular precisa a varios estímulos físico-­‐químicos, lo que permite a la célula adaptarse al entorno cambiante. La subfamilia TRPV contiene 6 miembros, clasificados en dos grupos atendiendo a su nivel de homología: TRPV1-­‐4 y TRPV5-­‐ 6. TRPV1-­‐4 son canales no selectivos de calcio que participan principalmente en termocepción, mecanocepción y la transducción del dolor. Los TRPV1-­‐4 son de un especial interés biomédico, ya que se han asociado con un amplio espectro de estados patológicos, desde distrofias musculares o neuronales a cáncer. Esta tesis tiene como objetivo ampliar el conocimiento sobre la regulación del subgrupo TRPV1-­‐4. En primer lugar, hemos recopilado la información disponible por medio de una revisión basada en TRPV2, uno de los miembros menos descritos y más interesante de la subfamilia TRPV. El análisis de la secuencia primaria y estudio de conservación de los dominios TRPV revelaron que los canales TRPV1-­‐4 comparten mecanismos básicos de funcionamiento, como el plegado y el transporte a membrana. Usando TRPV2 como punto de referencia, hemos determinado las propiedades de plegado y la topología de este canal y la importancia del dominio N-­‐terminal distal para el tráfico de TRPV2. Se les dio una atención especial a las interacciones proteína proteína, dado que los TRPV actúan dentro de las células formando complejos. Hemos mapeado la interacción con las proteínas SNARE al dominio MPD de TRPV1 y TRPV2 y el interactoma de los TRPV1-­‐4 se amplió por medio de un doble híbrido especifico de proteínas de membrana (MYTH) basado en TRPV1, TRPV2 y TRPV4.Los canales TRPV son canales de cationes que participan en la homeostasis del calcio con propiedades de activación polimodales. Los TRPVs regulan los niveles de calcio intracelular y promueven una respuesta celular precisa a varios estímulos físico-­‐químicos, lo que permite a la célula adaptarse al entorno cambiante. La subfamilia TRPV contiene 6 miembros, clasificados en dos grupos atendiendo a su nivel de homología: TRPV1-­‐4 y TRPV5-­‐ 6. TRPV1-­‐4 son canales no selectivos de calcio que participan principalmente en termocepción, mecanocepción y la transducción del dolor. Los TRPV1-­‐4 son de un especial interés biomédico, ya que se han asociado con un amplio espectro de estados patológicos, desde distrofias musculares o neuronales a cáncer. Esta tesis tiene como objetivo ampliar el conocimiento sobre la regulación del subgrupo TRPV1-­‐4. En primer lugar, hemos recopilado la información disponible por medio de una revisión basada en TRPV2, uno de los miembros menos descritos y más interesante de la subfamilia TRPV. El análisis de la secuencia primaria y estudio de conservación de los dominios TRPV revelaron que los canales TRPV1-­‐4 comparten mecanismos básicos de funcionamiento, como el plegado y el transporte a membrana. Usando TRPV2 como punto de referencia, hemos determinado las propiedades de plegado y la topología de este canal y la importancia del dominio N-­‐terminal distal para el tráfico de TRPV2. Se les dio una atención especial a las interacciones proteína proteína, dado que los TRPV actúan dentro de las células formando complejos. Hemos mapeado la interacción con las proteínas SNARE al dominio MPD de TRPV1 y TRPV2 y el interactoma de los TRPV1-­‐4 se amplió por medio de un doble híbrido especifico de proteínas de membrana (MYTH) basado en TRPV1, TRPV2 y TRPV4.TRPV channels are cation channels involved in the calcium homeostasis with polymodal activation properties. They regulate intracellular calcium levels promoting a fine tune cellular response to several physicochemical stimuli, allowing the cell to adapt to the environmental changes. TRPV subfamily contains 6 members classified in two groups attending to their homology level: TRPV1-­‐4 and TRPV5-­‐6. TRPV1-­‐4 are non selective calcium channels mainly involved in thermoception, mechanoception and pain transduction. TRPV1-­‐ 4 members are of special biomedical interest as they have been associated with a wide spectrum of pathological conditions, from muscular or neuronal dystrophies to cancer. This thesis aims to expand the knowledge on the regulation of TRPV1-­‐4 subgroup. First, we have compiled the available information in the field by means of a review based on TRPV2, one of the least described and more intriguing members of the TRPV subfamily. Primary sequence data mining and conservation study of TRPV domains revealed that TRPV1-­‐4 channels share common basic working mechanisms as folding and trafficking. Using TRPV2 as benchmark, we have determined the folding properties and topology of this channel and the importance of the distal N-­‐terminal domain for TRPV2 trafficking. Protein protein interactions were given a special attention as TRPV channels act within the cell forming protein complexes. We have mapped the interaction with SNARE proteins within the MPD domain of TRPV1 and TRPV2 and the TRPV1-­‐4 interactome was further expanded by means of a yeast two hybrid specific for membrane proteins (MYTH) based on TRPV1, TRPV2 and TRPV4

    Identification and characterization of the TRPVs protein-protein interactions, a comprehensive approach to elucidate TRPVs function and regulation

    Get PDF
    Departament responsable de la tesi: Departament de Bioquímica i Biologia Molecular.Los canales TRPV son canales de cationes que participan en la homeostasis del calcio con propiedades de activación polimodales. Los TRPVs regulan los niveles de calcio intracelular y promueven una respuesta celular precisa a varios estímulos físico-­-químicos, lo que permite a la célula adaptarse al entorno cambiante. La subfamilia TRPV contiene 6 miembros, clasificados en dos grupos atendiendo a su nivel de homología: TRPV1-­-4 y TRPV5-­-6. TRPV1-­-4 son canales no selectivos de calcio que participan principalmente en termocepción, mecanocepción y la transducción del dolor. LosTRPV1-­-4 son de un especial interés biomédico, ya que se han asociado con un amplio espectro de estados patológicos, desde distrofias musculares o neuronales a cáncer. Esta tesis tiene como objetivo ampliar el conocimiento sobre la regulación del subgrupo TRPV1-­-4. En primer lugar, hemos recopilado la información disponible por medio de una revisión basada en TRPV2, uno de los miembros menos descritos y más interesante de la subfamilia TRPV. El análisis de la secuencia primaria y estudio de conservación de los dominios TRPV revelaron que los canales TRPV1-­-4 comparten mecanismos básicos de funcionamiento, como el plegado y el transporte a membrana. Usando TRPV2 como punto de referencia, hemos determinado las propiedades de plegado y la topología de este canal y la importancia del dominio N-­-terminal distal para el tráfico de TRPV2. Se les dio una atención especial a las interacciones proteína proteína, dado que los TRPV actúan dentro de las células formando complejos. Hemos mapeado la interacción con las proteínas SNARE al dominio MPD de TRPV1 y TRPV2 y el interactoma de los TRPV1-­-4 se amplió por medio de un doble híbrido especifico de proteínas de membrana (MYTH) basado en TRPV1, TRPV2 y TRPV4.TRPV channels are cation channels involved in the calcium homeostasis with polymodal activation properties. They regulate intracellular calcium levels promoting a fine tune cellular response to several physicochemical stimuli, allowing the cell to adapt to the environmental changes. TRPV subfamily contains 6 members classified in two groups attending to their homology level: TRPV1-­-4 and TRPV5-­-6. TRPV1-­-4 are non selective calcium channels mainly involved in thermoception, mechanoception and pain transduction. TRPV1-­- 4 members are of special biomedical interest as they have been associated with a wide spectrum of pathological conditions, from muscular or neuronal dystrophies to cancer. This thesis aims to expand the knowledge on the regulation of TRPV1-­-4 subgroup. First, we have compiled the available information in the field by means of a review based on TRPV2, one of the least described and more intriguing members of the TRPV subfamily. Primary sequence data mining and conservation study of TRPV domains revealed that TRPV1-­-4 channels share common basic working mechanisms as folding and trafficking. Using TRPV2 as benchmark, we have determined the folding properties and topology of this channel and the importance of the distal N-­-terminal domain for TRPV2 trafficking. Protein protein interactions were given a special attention as TRPV channels act within the cell forming protein complexes. We have mapped the interaction with SNARE proteins within the MPD domain of TRPV1 and TRPV2 and the TRPV1-­-4 interactome was further expanded by means of a yeast two hybrid specific for membrane proteins (MYTH) based on TRPV1, TRPV2 and TRPV4
    corecore