4 research outputs found
Synthesis of Vectorized Nanoparticles Based on a Copolymer of N-Vinyl-2-Pyrrolidone with Allyl Glycidyl Ether and a Carbohydrate Vector
A method was developed for the conjugation of aminopropyl spacer-bearing carbohydrates with epoxy groups on the crown of nanoparticles consisting of a copolymer of N-vinyl-2-pyrrolidone and allyl glycidyl ether in basic buffer, opening prospects for the design of vectorized nanocomposite drug forms. A conjugate of the above copolymer and trisaccharide A, a synthetic blood group antigen, was synthesized. Meglumine was used to bind any unreacted epoxide groups of the allyl glycidyl fragment. One- and two-dimensional NMR spectroscopy showed quantitative opening of the epoxide ring as a result of carbohydrate immobilization. By integrating the characteristic signals in the 1H NMR spectrum, we determined the molar ratio of the immobilized vector and meglumine, as well as the composition and number-average molecular weight of the carrier copolymer. The results obtained point to the interesting possibilities in the further study of the polymer–carbohydrate ligand system as a platform for the development of several drug carriers and theranostics based on them
Synthesis of Vectorized Nanoparticles Based on a Copolymer of N-Vinyl-2-Pyrrolidone with Allyl Glycidyl Ether and a Carbohydrate Vector
A method was developed for the conjugation of aminopropyl spacer-bearing carbohydrates with epoxy groups on the crown of nanoparticles consisting of a copolymer of N-vinyl-2-pyrrolidone and allyl glycidyl ether in basic buffer, opening prospects for the design of vectorized nanocomposite drug forms. A conjugate of the above copolymer and trisaccharide A, a synthetic blood group antigen, was synthesized. Meglumine was used to bind any unreacted epoxide groups of the allyl glycidyl fragment. One- and two-dimensional NMR spectroscopy showed quantitative opening of the epoxide ring as a result of carbohydrate immobilization. By integrating the characteristic signals in the 1H NMR spectrum, we determined the molar ratio of the immobilized vector and meglumine, as well as the composition and number-average molecular weight of the carrier copolymer. The results obtained point to the interesting possibilities in the further study of the polymer–carbohydrate ligand system as a platform for the development of several drug carriers and theranostics based on them
Perspectives for the Use of Fucoidans in Clinical Oncology
Fucoidans are natural sulfated polysaccharides that have a wide range of biological functions and are regarded as promising antitumor agents. The activity of various fucoidans and their derivatives has been demonstrated in vitro on tumor cells of different histogenesis and in experiments on mice with grafted tumors. However, these experimental models showed low levels of antitumor activity and clinical trials did not prove that this class of compounds could serve as antitumor drugs. Nevertheless, the anti-inflammatory, antiangiogenic, immunostimulating, and anticoagulant properties of fucoidans, as well as their ability to stimulate hematopoiesis during cytostatic-based antitumor therapy, suggest that effective fucoidan-based drugs could be designed for the supportive care and symptomatic therapy of cancer patients. The use of fucoidans in cancer patients after chemotherapy and radiation therapy might promote the rapid improvement of hematopoiesis, while their anti-inflammatory, immunomodulatory, and anticoagulant effects have the potential to improve the quality of life of patients with advanced cancer