2 research outputs found

    Distinct Groups of Low- and High-Fe Ferropericlase Inclusions in Super-Deep Diamonds: An Example from the Juina Area, Brazil

    No full text
    Diamonds from the Rio Sorriso placer in the Juina area, Mato Grosso State, Brazil, contain mineral inclusions of ferropericlase associated with MgSiO3, CaSiO3, magnesite, merrillite, and other minerals. The ferropericlase inclusions in Rio Sorriso diamonds are resolved into two distinct genetic and compositional groups: (1) protogenetic, high-Ni and low-Fe (Ni = 8270–10,660 ppm; mg# = 0.756–0.842) ferropericlases, and (2) syngenetic, low-Ni and high-Fe (Ni = 600–3050 ppm; mg# = 0.477–0.718) ferropericlases. Based on the crystallographic orientation relationships between natural ferropericlase inclusions and host diamonds, high-Ni and low-Fe ferropericlases originate in the upper part of the lower mantle, while low-Ni and high-Fe ferropericlases, most likely, originate in the lithosphere. Mineral inclusions form the ultramafic lower-mantle (MgSiO3, which we suggest as bridgmanite, CaSiO3, which we suggest as CaSi-perovskite, and high-Ni and low-Fe ferropericlase) and lithospheric (CaSiO3, which we suggest as breyite, Ca(Si,Ti)O3, and low-Ni and high-Fe ferropericlase) associations. The presence of magnesite and merrillite inclusions in association with ferropericlase confirmed the existence of a deep-seated carbonatitic association. Diamonds hosting high-Ni and low-Ni ferropericlase have different carbon-isotopic compositions (δ13C = −5.52 ± 0.75‰ versus −7.07 ± 1.23‰ VPDB, respectively). It implies the carbon-isotopic stratification of the mantle: in the lower mantle, the carbon-isotopic composition tends to become isotopically heavier (less depleted in 13C) than in lithospheric diamonds. These regularities may characterize deep-seated diamonds and ferropericlases not only in the Juina area of Brazil but also in other parts of the world

    First Multy-Proxy Studies Of High-Mountain Lakes In Armenia: Preliminary Results

    Get PDF
    Within the framework of the Russian-Armenian project “The Paleolimnological Aspect of Studying the Evolution of Ecosystems of High-Mountain Lakes of Russia and Armenia” in July-August 2018, we investigated four high-mountain lakes of Armenia. The research focuses on the lakes Kari, Umroi, Akna and Sev. All investigated lakes are located at the altitudes about 3000 m above sea level. We first time these lakes were investigated using a multi-proxy method that includes paleolimnological, geomorphological, hydrological, geochemical and biogeographic studies. The research offers the first statistical characteristics of lake depth distribution, water volume and other morphometrics. Lake sediments sequences and radiocarbon dates were received and analyzed for Armenian small lakes for the first time. We determined that all the studied lakes were formed during the Holocene. Sediments of Lake Kari were deposited in the last 4000 years, sediments of Lake Umroi – within the last 8000 years, while maximum thickness of sediments is around 1 m in both lakes. Hence, we assume low deposition rate in Armenian high-mountain lakes, however, it varied significantly in different periods of lake history
    corecore