145 research outputs found

    Neural networks to intrusion detection

    Get PDF
    Recent research indicates a lot of attempts to create an Intrusion Detection System that is capable of learning and recognizing attacks it faces for the first time. Benchmark datasets were created by the MIT Lincoln Lab and by the International Knowledge Discovery and Data Mining group (KDD). A few competitions were held and many systems developed. The overall preference was given to Expert Systems that were based on Decision Making Tree algorithms. This work is devoted to the problem of Neural Networks as means of Intrusion Detection. After multiple techniques and methodologies are investigated, we show that properly trained Neural Networks are capable of fast recognition and classification of different attacks. The advantage of the taken approach allows us to demonstrate the superiority of the Neural Networks over the systems that were created by the winner of the KDD Cups competition and later researchers due to their capability to recognize an attack, to differentiate one attack from another, i.e. classify attacks, and, the most important, to detect new attacks that were not included into the training set. The results obtained through simulations indicate that it is possible to recognize attacks that the Intrusion Detection System never faced before on an acceptably high level

    Devil's staircase of incompressible electron states in a nanotube

    Full text link
    It is shown that a periodic potential applied to a nanotube can lock electrons into incompressible states. Depending on whether electrons are weakly or tightly bound to the potential, excitation gaps open up either due to the Bragg diffraction enhanced by the Tomonaga - Luttinger correlations, or via pinning of the Wigner crystal. Incompressible states can be detected in a Thouless pump setup, in which a slowly moving periodic potential induces quantized current, with a possibility to pump on average a fraction of an electron per cycle as a result of interactions.Comment: 4 pages, 1 figure, published versio

    Electron properties of carbon nanotubes in a periodic potential

    Full text link
    A periodic potential applied to a nanotube is shown to lock electrons into incompressible states that can form a devil's staircase. Electron interactions result in spectral gaps when the electron density (relative to a half-filled Carbon pi-band) is a rational number per potential period, in contrast to the single-particle case where only the integer-density gaps are allowed. When electrons are weakly bound to the potential, incompressible states arise due to Bragg diffraction in the Luttinger liquid. Charge gaps are enhanced due to quantum fluctuations, whereas neutral excitations are governed by an effective SU(4)~O(6) Gross-Neveu Lagrangian. In the opposite limit of the tightly bound electrons, effects of exchange are unimportant, and the system behaves as a single fermion mode that represents a Wigner crystal pinned by the external potential, with the gaps dominated by the Coulomb repulsion. The phase diagram is drawn using the effective spinless Dirac Hamiltonian derived in this limit. Incompressible states can be detected in the adiabatic transport setup realized by a slowly moving potential wave, with electron interactions providing the possibility of pumping of a fraction of an electron per cycle (equivalently, in pumping at a fraction of the base frequency).Comment: 21 pgs, 8 fig

    Mott insulating state in ultraclean carbon nanotubes

    Get PDF
    The Mott insulating state is a manifestation of strong electron interactions in nominally metallic systems. Using transport spectroscopy, we showed that an energy gap exists in nominally metallic carbon nanotubes and occurs in addition to the band gap in small–band-gap nanotubes, indicating that carbon nanotubes are never metallic. This gap has a magnitude of ~10 to 100 milli–electron volts and a nanotube radius (r) dependence of ~1/r, which is in good agreement with predictions for a nanotube Mott insulating state. We also observed neutral excitations within the gap, as predicted for this state. Our results underscore nanotubes' exceptional capabilities for use in studying correlated electron phenomena in one dimension

    Broadband optical properties of monolayer and bulk MoS2

    Get PDF
    Layered semiconductors such as transition metal dichalcogenides (TMDs) offer endless possibilities for designing modern photonic and optoelectronic components. However, their optical engineering is still a challenging task owing to multiple obstacles, including the absence of a rapid, contactless, and the reliable method to obtain their dielectric function as well as to evaluate in situ the changes in optical constants and exciton binding energies. Here, we present an advanced approach based on ellipsometry measurements for retrieval of dielectric functions and the excitonic properties of both monolayer and bulk TMDs. Using this method, we conduct a detailed study of monolayer MoS2 and its bulk crystal in the broad spectral range (290–3300 nm). In the near- and mid-infrared ranges, both configurations appear to have no optical absorption and possess an extremely high dielectric permittivity making them favorable for lossless subwavelength photonics. In addition, the proposed approach opens a possibility to observe a previously unreported peak in the dielectric function of monolayer MoS2 induced by the use of perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt (PTAS) seeding promoters for MoS2 synthesis and thus enables its applications in chemical and biological sensing. Therefore, this technique as a whole offers a state-of-the-art metrological tool for next-generation TMD-based devices

    High-refractive index and mechanically cleavable non-van der Waals InGaS3

    Full text link
    The growing families of two-dimensional crystals derived from naturally occurring van der Waals materials offer an unprecedented platform to investigate elusive physical phenomena and could be of use in a diverse range of devices. Of particular interest are recently reported atomic sheets of non-van der Waals materials, which could allow a better comprehension of the nature of structural bonds and increase the functionality of prospective heterostructures. Here, we study the optostructural properties of ultrathin non-van der Waals InGaS3 sheets produced by standard mechanical cleavage. Our ab initio calculation results suggest an emergence of authentically delicate out-of-plane covalent bonds within its unit cell, and, as a consequence, an artificial generation of layered structure within the material. Those yield to singular layer isolation energies of around 50 meVA-2, which is comparable with the conventional van der Waals material's monolayer isolation energies of 20 - 60 meVA-2. In addition, we provide a comprehensive analysis of the structural, vibrational, and optical properties of the materials presenting that it is a wide bandgap (2.73 eV) semiconductor with a high-refractive index (higher than 2.5) and negligible losses in the visible and infrared spectral ranges. It makes it a perfect candidate for further establishment of visible-range all-dielectric nanophotonics

    Strongly correlated electron behavior in carbon nanotubes

    Full text link
    One dimensional systems offer a fascinating platform for investigating and understanding the collective and many-body behavior of interacting electron systems. We report low-temperature transport experiments on carbon nanotubes, which are archetypal one-dimensional systems that have either semiconducting or metallic band structure depending on their radius and chirality. Semiconducting nanotubes at low densities exhibit Wigner crystal behavior, while nominally metallic nanotubes are observed to have an energy gap at half filling, consistent with theories of a Mott insulating state in nanotubes. Our results demonstrate nanotubes’ promise for studying a variety of tunable correlated electron phenomena in one dimension
    • …
    corecore