8 research outputs found

    Comparative analysis of switched reluctance motor control algorithms

    Get PDF
    Nowadays it has become possible to develop inexpensive modern control systems for nonlinear complexity electromechanical objects due to the development of microprocessor technology and power electronics. Switched reluctance electric machines are among these devices. It makes it possible to widely use such electric machines in various practical implementations, in particular, in traction drives, electric drives of oil and gas drilling rigs, and in other applications. The switched reluctance electric machine is a non-linear object, and its control methods require formalization and grouping. The manuscript considers the design and functional features of switched reluctance electrical machines. The main methods of controlling these electrical machine types are given. Comparative analysis of the most known methods is carried out. The main classical methods of switched reluctance electric machine control are considered, such as a relay current controller with a limitation, the method of controlling the turn on/off angles and controlling the DC link voltage. Transient responses in the electric drive system are demonstrated using the considered methods. It is shown that by adjusting the on/off angles, it is possible to reduce the torque oscillation coefficient. The identified features of the presented methods will make it possible to simplify and reduce the development time for an effective control system for switched reluctance electrical machines as well as to reduce the torque ripple

    Dynamics and buckling loads for a vibrating damped Euler–Bernoulli beam connected to an inhomogeneous foundation

    No full text
    In this paper, the dynamics and the buckling loads for an Euler–Bernoulli beam resting on an inhomogeneous elastic, Winkler foundation are studied. An analytical, asymptotic method is proposed to determine the stability of the Euler–Bernoulli beam for various types of inhomogeneities in the elastic foundation taking into account different types of damping models. Based on the Rayleigh variation principle, beam buckling loads are computed for cases of harmonically perturbed types of inhomogeneities in the elastic foundation, for cases of point inhomogeneities in the form of concentrated springs in the elastic foundation, and for cases with rectangular inclusions in the elastic foundation. The investigation of the beam dynamics shows the possibility of internal resonances for particular values of the beam rigidity and longitudinal force. Such types of resonances, which are usually typical for nonlinear systems, are only possible for the beam due to its inhomogeneous foundation. The occurrence of so-called added mass effects near buckling instabilities under the influence of damping have been found. The analytical expressions for this “added mass” effect have been obtained for different damping models including space hysteresis types. This effect arises as a result of an interaction between the main mode, which is close to instability, and all the other stable modes of vibration.</p

    Bearing fault analysis of bldc motor for electric scooter application

    No full text
    In this paper, the bearing faults analysis of the brushless DC motor is presented. The research method is based on the analysis of the vibration signal of healthy as well as faulty bearings by the identification of specific frequencies on the vibration spectrum. For the experiment, the most common faults were inflicted on the bearings. As the used motor is intended for electric scooter applications, seven different damages were chosen, which are highly likely to occur during the scooter operation. The main bearing faults and the possibility of fault monitoring are addressed. The vibration data are gathered by the acceleration sensors placed on the motor at different locations and the spectrum analysis is performed using the fast Fourier transform. The variation in the amplitude of the frequency harmonics particularly the fundamental component is presented as a fault indicator.Peer reviewe

    A review of synchronous reluctance motor-drive advancements

    No full text
    Recent studies show that synchronous reluctance motors (SynRMs) present promising technologies. As a result, research on trending SynRMs drive systems has expanded. This work disseminates the recent developments of design, modeling, and more specifically, control of these motors. Firstly, a brief study of the dominant motor technologies compared to SynRMs is carried out. Secondly, the most prominent motor control methods are studied and classified, which can come in handy for researchers and industries to opt for a proper control method for motor drive systems. Finally, the control strategies for different speed regions of SynRM are studied and the transitions between trajectories are analyzed.Peer reviewe

    Dynamics and buckling loads for a vibrating damped Euler–Bernoulli beam connected to an inhomogeneous foundation

    No full text
    In this paper, the dynamics and the buckling loads for an Euler–Bernoulli beam resting on an inhomogeneous elastic, Winkler foundation are studied. An analytical, asymptotic method is proposed to determine the stability of the Euler–Bernoulli beam for various types of inhomogeneities in the elastic foundation taking into account different types of damping models. Based on the Rayleigh variation principle, beam buckling loads are computed for cases of harmonically perturbed types of inhomogeneities in the elastic foundation, for cases of point inhomogeneities in the form of concentrated springs in the elastic foundation, and for cases with rectangular inclusions in the elastic foundation. The investigation of the beam dynamics shows the possibility of internal resonances for particular values of the beam rigidity and longitudinal force. Such types of resonances, which are usually typical for nonlinear systems, are only possible for the beam due to its inhomogeneous foundation. The occurrence of so-called added mass effects near buckling instabilities under the influence of damping have been found. The analytical expressions for this “added mass” effect have been obtained for different damping models including space hysteresis types. This effect arises as a result of an interaction between the main mode, which is close to instability, and all the other stable modes of vibration.Mathematical Physic

    A parallel estimation system of stator resistance and rotor speed for active disturbance rejection control of six-phase induction motor

    No full text
    In this paper, a parallel estimation system of the stator resistance and the rotor speed is proposed in speed sensorless six-phase induction motor (6PIM) drive. First, a full-order observer is presented to provide the stator current and the rotor flux. Then, an adaptive control law is designed using the Lyapunov stability theorem to estimate the rotor speed. In parallel, a stator resistance identification scheme is proposed using more degrees of freedom of the 6PIM, which is also based on the Lyapunov stability theorem. The main advantage of the proposed method is that the stator resistance adaptation is completely decoupled from the rotor speed estimation algorithm. To increase the robustness of the drive system against external disturbances, noises, and parameter uncertainties, an active disturbance rejection controller (ADRC) is introduced in direct torque control (DTC) of the 6PIM. The experimental results clarify the effectiveness of the proposed approaches.Peer reviewe

    A modified dynamic model of single-sided linear induction motors considering longitudinal and transversal effects

    No full text
    Funding Information: Funding: The research has been supported by the Estonian Research Council under grant PSG453 “Digital twin for propulsion drive of an autonomous electric vehicle”. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.This paper proposes a modified dynamic equivalent circuit model for a linear induction motor considering both longitudinal end effect and transverse edge effect. The dynamic end effect (speed-dependent end effect) is based on conventional Duncan’s approach. The transverse edge effect is investigated by using three correction factors applied to the secondary resistance and magnetizing inductance. Moreover, the iron saturation effect, the skin effect, and the air-gap leakage effect are incorporated into the proposed model by using the field-analysis method. A new topology of the steady-state and space-vector model of linear induction, regarding all mentioned phenomena, is presented. The parameters of this model are calculated using both field analysis and the finite-element method. The steady-state performance of the model is first validated using the finite-element method. Additionally, the dynamic performance of the proposed model is studied. The results prove that the proposed equivalent circuit model can precisely predict the dynamic and steady-state performances of the linear induction.Peer reviewe
    corecore