8 research outputs found

    Friction Stir Welding of a TRIP Fe49Mn30Cr10Co10C1 High Entropy Alloy

    No full text
    The effect of friction stir welding parameters on the structure and properties of Fe49Mn30Cr10Co10C1 high-entropy alloy welds was studied. Due to the development of the TRIP effect, the mechanical behaviour of this alloy was associated with the γ fcc-to-ε hcp martensitic transformation. In the initial condition, the microstructure of the program alloy comprised equiaxed fcc grains and small fractions of the hcp ε-martensite (~5%) and M23C6 carbides (~4%). Friction stir welding of the program alloy resulted in recrystallization of the stir zone and a decrease in the fraction of the carbides to 1–2%; however, the percentage of the hcp phase remained at nearly the same level as that in the initial condition. Post-welding tests showed a considerable increase in the strength and microhardness of the welds both due to the recrystallization-induced decrease in grain size and martensitic transformation

    Mechanical Behavior of a Medium-Entropy Fe<sub>65</sub>(CoNi)<sub>25</sub>Cr<sub>9.5</sub>C<sub>0.5</sub> Alloy Produced by Selective Laser Melting

    No full text
    Specimens of a medium-entropy Fe65(CoNi)25Cr9.5C0.5 (in at.%) alloy were produced using additive manufacturing (selective laser melting, SLM). The selected parameters of SLM resulted in a very high density in the specimens with a residual porosity of less than 0.5%. The structure and mechanical behavior of the alloy were studied under tension at room and cryogenic temperatures. The microstructure of the alloy produced by SLM comprised an elongated substructure, inside which cells with a size of ~300 nm were observed. The as-produced alloy demonstrated high yield strength and ultimate tensile strength (YS = 680 MPa; UTS = 1800 MPa) along with good ductility (tensile elongation = 26%) at a cryogenic temperature (77 K) that was associated with the development of transformation-induced plasticity (TRIP) effect. At room temperature, the TRIP effect was less pronounced. Consequently, the alloy demonstrated lower strain hardening and a YS/UTS of 560/640 MPa. The deformation mechanisms of the alloy are discussed

    Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling

    No full text
    The effect of cold rolling on the microstructure and mechanical properties of an Al- and C-containing CoCrFeNiMn-type high-entropy alloy was reported. The alloy with a chemical composition (at %) of (20–23) Co, Cr, Fe, and Ni; 8.82 Mn; 3.37 Al; and 0.69 C was produced by self-propagating high-temperature synthesis with subsequent induction. In the initial as-cast condition the alloy had an face centered cubic single-phase coarse-grained structure. Microstructure evolution was mostly associated with either planar dislocation glide at relatively low deformation during rolling (up to 20%) or deformation twinning and shear banding at higher strain. After 80% reduction, a heavily deformed twinned/subgrained structure was observed. A comparison with the equiatomic CoCrFeNiMn alloy revealed higher dislocation density at all stages of cold rolling and later onset of deformation twinning that was attributed to a stacking fault energy increase in the program alloy; this assumption was confirmed by calculations. In the initial as-cast condition the alloy had low yield strength of 210 MPa with yet very high uniform elongation of 74%. After 80% rolling, yield strength approached 1310 MPa while uniform elongation decreased to 1.3%. Substructure strengthening was found to be dominated at low rolling reductions (&lt;40%), while grain (twin) boundary strengthening prevailed at higher strains

    Combustion Synthesis and Reactive Spark Plasma Sintering of Non-Equiatomic CoAl-Based High Entropy Intermetallics

    No full text
    The present work reports the direct production of a high-entropy (HE) intermetallic CoNi0.3Fe0.3Cr0.15Al material with a B2 structure from mechanically activated elemental powder mixtures. Fast and efficient combustion synthesis (CS), spark plasma sintering (SPS), and reactive SPS (RSPS) methods were used to synthesize the HE powders and bulks. The formation of the main B2 phase along with some amounts of secondary BCC and FCC phases are reported, and L12 intermetallic (CS scheme) and BCC based on Cr (CS + SPS and RSPS schemes at 1000 &deg;C) were observed in all samples. The interaction between the components during heating to 1600 &deg;C of the mechanically activated mixtures and CS powders has been studied. It has been shown that the formation of the CoNi0.3Fe0.3Cr0.15Al phase occurs at 1370 &deg;C through the formation of intermediate intermetallic phases (Al9Me2, AlCo, AlNi3) and their solid solutions, which coincidences well with thermodynamic calculations and solubility diagrams. Compression tests at room and elevated temperatures showed that the alloy obtained by the RSPS method has enhanced mechanical properties (&sigma;p = 2.79 GPa, &sigma;0.2 = 1.82 GPa, &epsilon; = 11.5% at 400 &deg;C) that surpass many known alloys in this system. High mechanical properties at elevated temperatures are provided by the B2 ordered phase due to the presence of impurity atoms and defects in the lattice

    Combustion Synthesis and Reactive Spark Plasma Sintering of Non-Equiatomic CoAl-Based High Entropy Intermetallics

    No full text
    The present work reports the direct production of a high-entropy (HE) intermetallic CoNi0.3Fe0.3Cr0.15Al material with a B2 structure from mechanically activated elemental powder mixtures. Fast and efficient combustion synthesis (CS), spark plasma sintering (SPS), and reactive SPS (RSPS) methods were used to synthesize the HE powders and bulks. The formation of the main B2 phase along with some amounts of secondary BCC and FCC phases are reported, and L12 intermetallic (CS scheme) and BCC based on Cr (CS + SPS and RSPS schemes at 1000 °C) were observed in all samples. The interaction between the components during heating to 1600 °C of the mechanically activated mixtures and CS powders has been studied. It has been shown that the formation of the CoNi0.3Fe0.3Cr0.15Al phase occurs at 1370 °C through the formation of intermediate intermetallic phases (Al9Me2, AlCo, AlNi3) and their solid solutions, which coincidences well with thermodynamic calculations and solubility diagrams. Compression tests at room and elevated temperatures showed that the alloy obtained by the RSPS method has enhanced mechanical properties (σp = 2.79 GPa, σ0.2 = 1.82 GPa, ε = 11.5% at 400 °C) that surpass many known alloys in this system. High mechanical properties at elevated temperatures are provided by the B2 ordered phase due to the presence of impurity atoms and defects in the lattice
    corecore