10 research outputs found

    The Gene Ontology knowledgebase in 2023

    Get PDF
    The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO-a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations-evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)-mechanistic models of molecular "pathways" (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project

    Application of Ultrashort Lasers in Developmental Biology: A Review

    Full text link
    The evolution of laser technologies and the invention of ultrashort laser pulses have resulted in a sharp jump in laser applications in life sciences. Developmental biology is no exception. The unique ability of ultrashort laser pulses to deposit energy into a microscopic volume in the bulk of transparent material without disrupting the surrounding tissues makes ultrashort lasers a versatile tool for precise microsurgery of cells and subcellular components within structurally complex and fragile specimens like embryos as well as for high-resolution imaging of embryonic processes and developmental mechanisms. Here, we present an overview of recent applications of ultrashort lasers in developmental biology, including techniques of noncontact laser-assisted microsurgery of preimplantation mammalian embryos for oocyte/blastomere enucleation and embryonic cell fusion, as well as techniques of optical transfection and injection for targeted delivery of biomolecules into living embryos and laser-mediated microsurgery of externally developing embryos. Possible applications of ultrashort laser pulses for use in Assisted Reproductive Technologies are also highlighted. Moreover, we discuss various nonlinear optical microscopy techniques (two-photon excited fluorescence, second and third harmonic generation, and coherent Raman scattering) and their application for label-free non-invasive imaging of embryos in their unperturbed state or post-laser-induced modifications

    Application of Ultrashort Lasers in Developmental Biology: A Review

    Full text link
    The evolution of laser technologies and the invention of ultrashort laser pulses have resulted in a sharp jump in laser applications in life sciences. Developmental biology is no exception. The unique ability of ultrashort laser pulses to deposit energy into a microscopic volume in the bulk of transparent material without disrupting the surrounding tissues makes ultrashort lasers a versatile tool for precise microsurgery of cells and subcellular components within structurally complex and fragile specimens like embryos as well as for high-resolution imaging of embryonic processes and developmental mechanisms. Here, we present an overview of recent applications of ultrashort lasers in developmental biology, including techniques of noncontact laser-assisted microsurgery of preimplantation mammalian embryos for oocyte/blastomere enucleation and embryonic cell fusion, as well as techniques of optical transfection and injection for targeted delivery of biomolecules into living embryos and laser-mediated microsurgery of externally developing embryos. Possible applications of ultrashort laser pulses for use in Assisted Reproductive Technologies are also highlighted. Moreover, we discuss various nonlinear optical microscopy techniques (two-photon excited fluorescence, second and third harmonic generation, and coherent Raman scattering) and their application for label-free non-invasive imaging of embryos in their unperturbed state or post-laser-induced modifications

    New records and range expansion of Calosoma sycophanta (Linnaeus, 1758) (Coleoptera, Carabidae) in Western Siberia, Russia

    Get PDF
    In this study, we report about 25 records of Calosoma sycophanta (Linnaeus, 1758) from Western Siberia collected in the last 21 years (1997–2017). We extend the known distribution of this species in the Tyumen, Kurgan, Omsk and Novosibirsk regions of Russia. New records extend the known distribution of C. sycophanta for 300 km to the north, and for 600 km to the east, in the Western Siberia. These new distributional data may contribute to a re-evaluation of its conservation status

    The Gene Ontology Knowledgebase in 2023

    Full text link
    : The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and non-coding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains and updates the GO knowledgebase. The GO knowledgebase consists of three components: 1) the Gene Ontology - a computational knowledge structure describing functional characteristics of genes; 2) GO annotations - evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and 3) GO Causal Activity Models (GO-CAMs) - mechanistic models of molecular "pathways" (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised and updated in response to newly published discoveries, and receives extensive QA checks, reviews and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, as well as guidance on how users can best make use of the data we provide. We conclude with future directions for the project
    corecore