18 research outputs found

    Semiclassical S-matrix for black holes

    Full text link
    We propose a semiclassical method to calculate S-matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(-B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp(B) as the number of black hole states. The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordstrom black hole. Our semiclassical method opens a new systematic approach to the gravitational S-matrix in the non-perturbative regime.Comment: 41 pages, 13 figures; Introduction rewritten, references added; journal versio

    Semiclassical S-matrix and black hole entropy in dilaton gravity

    Full text link
    We use complex semiclassical method to compute scattering amplitudes of a point particle in dilaton gravity with a boundary. This model has nonzero minimal black hole mass McrM_{cr}. We find that at energies below McrM_{cr} the particle trivially scatters off the boundary with unit probability. At higher energies the scattering amplitude is exponentially suppressed. The corresponding semiclassical solution is interpreted as formation of an intermediate black hole decaying into the final-state particle. Relating the suppression of the scattering probability to the number of the intermediate black hole states, we find an expression for the black hole entropy consistent with thermodynamics. In addition, we fix the constant part of the entropy which is left free by the thermodynamic arguments. We rederive this result by modifying the standard Euclidean entropy calculation.Comment: 33 pages, 9 figure

    Solar mass black holes from neutron stars and bosonic dark matter

    No full text
    Black holes with masses ≈1 M cannot be produced via stellar evolution. A popular scenario of their formation involves transmutation of neutron stars - by accumulation of dark matter triggering gravitational collapse in the star centers. We show that this scenario can be realized in the models of bosonic dark matter despite the apparently contradicting requirements on the interactions of dark matter particles: on the one hand, they should couple to neutrons strongly enough to be captured inside the neutron stars, and on the other, their loop-induced self-interactions impede collapse. Observing that these conflicting conditions are imposed at different scales, we demonstrate that models with efficient accumulation of dark matter can be deformed at large fields to make unavoidable its subsequent collapse into a black hole. Workable examples include weakly coupled models with bent infinite valleys.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    The fate of small classically stable Q-balls

    No full text
    Abstract The smallest classically stable Q-balls are, in fact, generically metastable: in quantum theory they decay into free particles via collective tunneling. We derive general semiclassical method to calculate the rate of this process in the entire kinematical region of Q-ball metastability. Our method uses Euclidean field-theoretical solutions resembling the Coleman’s bounce and fluctuations around them. As an application of the method, we numerically compute the decay rate to the leading semiclassical order in a particular one-field model. We shortly discuss cosmological implications of metastable Q-balls

    Exact solutions and critical chaos in dilaton gravity with a boundary

    No full text
    Abstract We consider (1 + 1)-dimensional dilaton gravity with a reflecting dynamical boundary. The boundary cuts off the region of strong coupling and makes our model causally similar to the spherically-symmetric sector of multidimensional gravity. We demonstrate that this model is exactly solvable at the classical level and possesses an on-shell SL(2, ℝ) symmetry. After introducing general classical solution of the model, we study a large subset of soliton solutions. The latter describe reflection of matter waves off the boundary at low energies and formation of black holes at energies above critical. They can be related to the eigenstates of the auxiliary integrable system, the Gaudin spin chain. We argue that despite being exactly solvable, the model in the critical regime, i.e. at the verge of black hole formation, displays dynamical instabilities specific to chaotic systems. We believe that this model will be useful for studying black holes and gravitational scattering

    New Possibilities of ESR for Modern Machine Engineering

    No full text
    corecore