187 research outputs found

    Bayesian modeling and significant features exploration in wavelet power spectra

    Get PDF
    This study proposes and justifies a Bayesian approach to modeling wavelet coefficients and finding statistically significant features in wavelet power spectra. The approach utilizes ideas elaborated in scale-space smoothing methods and wavelet data analysis. We treat each scale of the discrete wavelet decomposition as a sequence of independent random variables and then apply Bayes' rule for constructing the posterior distribution of the smoothed wavelet coefficients. Samples drawn from the posterior are subsequently used for finding the estimate of the true wavelet spectrum at each scale. The method offers two different significance testing procedures for wavelet spectra. A traditional approach assesses the statistical significance against a red noise background. The second procedure tests for homoscedasticity of the wavelet power assessing whether the spectrum derivative significantly differs from zero at each particular point of the spectrum. Case studies with simulated data and climatic time-series prove the method to be a potentially useful tool in data analysis

    Variability and climate sensitivity of fast ice extent in the north-eastern Kara Sea

    Get PDF
    This work investigates the temporal and spatial variation of shore-fast ice extent in the north-eastern part of the Kara Sea during 1953–1990 and its sensitivity to interannual variability of the regional climate. The area of fast ice in spring months shows a bimodal distribution. This indicates the existence of two different regimes of fast ice formation driven by the system of prevailing winds. The westward wind transport during the cold season gives larger fast ice extent while the eastward wind transport suppresses the expansion of fast ice. There is a significant correlation (ca. –0.55) between the average winter temperature and the area of fast ice. Linear trends for time records of shore-fast ice area in spring show a decrease during 1953–1990. This decrease is most pronounced in April: the mean fast ice area in April is 12 % lower in 1988–1990 compared to 1953–55. A comparison of fast ice regimes for two particular years— 1979 and 1985—revealed a significant influence of cyclone activity on fast ice development over the course of the cold season. It is shown that partial break-ups of fast ice in spring 1985 are associated with the passage of cyclones across the area of fast ice

    Regime shift in Arctic Ocean sea ice thickness

    Get PDF
    Manifestations of climate change are often shown as gradual changes in physical or biogeochemical properties1. Components of the climate system, however, can show stepwise shifts from one regime to another, as a nonlinear response of the system to a changing forcing2. Here we show that the Arctic sea ice regime shifted in 2007 from thicker and deformed to thinner and more uniform ice cover. Continuous sea ice monitoring in the Fram Strait over the last three decades revealed the shift. After the shift, the fraction of thick and deformed ice dropped by half and has not recovered to date. The timing of the shift was preceded by a two-step reduction in residence time of sea ice in the Arctic Basin, initiated first in 2005 and followed by 2007. We demonstrate that a simple model describing the stochastic process of dynamic sea ice thickening explains the observed ice thickness changes as a result of the reduced residence time. Our study highlights the long-lasting impact of climate change on the Arctic sea ice through reduced residence time and its connection to the coupled ocean–sea ice processes in the adjacent marginal seas and shelves of the Arctic Ocean.publishedVersio

    Environmental changes in Krossfjorden, Svalbard, since 1950 : Benthic foraminiferal and stable isotope evidence

    Get PDF
    Environmental changes for the past ca. 50 years were studied in a short sediment core from inner Krossfjorden, Svalbard, investigating benthic foraminifera and stable isotopes (delta O-18, delta C-13). A depth-age model based on anthropogenic Cs-137 time markers indicates that record covers the period from 1955 to 2007 and has sediment accumulation rates of ca. 0.3 to 1 cm/year. The benthic foraminifera are arctic and/or common in glaciomarine environments. Six fauna assemblages were identified using stratigraphically constrained cluster analysis. Benthic foraminiferal fauna assemblages are mainly dominated by Cassidulina reniforme. Elphidium clavatum is dominant from 1973 to 1986 and 2002 to 2007, likely due to greater turbidity in the water column. We interpret the increased percentages of Spiroplectammina biformis over the same intervals to reflect a slightly lower salinity probably caused by meltwater. During a short time period, 1970 to 1973, Stainforthia concava dominates the benthic foraminiferal fauna interpreted to reflect increased productivity within a marginal ice zone. Other species as Islandiella norcrossi, Nonionellina labradorica, Islandiella helenae, and Melonis barleanus also indicate more nutrient-rich waters are present but not very abundant throughout the record probably due to the glacier proximal position of the study site. The stable isotope record (delta O-18) shows lighter values from 2001 to 2007, which seem to correlate well with oceanographic monitoring data showing increasing core temperatures of West Spitsbergen Current.Peer reviewe

    Snow contribution to first-year and second-year Arctic sea ice mass balance north of Svalbard

    Get PDF
    The salinity and water oxygen isotope composition (δ18O) of 29 first-year (FYI) and second-year (SYI) Arctic sea ice cores (total length 32.0 m) from the drifting ice pack north of Svalbard were examined to quantify the contribution of snow to sea ice mass. Five cores (total length 6.4 m) were analyzed for their structural composition, showing variable contribution of 10–30% by granular ice. In these cores, snow had been entrained in 6–28% of the total ice thickness. We found evidence of snow contribution in about three quarters of the sea ice cores, when surface granular layers had very low δ18O values. Snow contributed 7.5–9.7% to sea ice mass balance on average (including also cores with no snow) based on δ18O mass balance calculations. In SYI cores, snow fraction by mass (12.7–16.3%) was much higher than in FYI cores (3.3–4.4%), while the bulk salinity of FYI (4.9) was distinctively higher than for SYI (2.7). We conclude that oxygen isotopes and salinity profiles can give information on the age of the ice and enables distinction between FYI and SYI (or older) ice in the area north of Svalbard

    Long-term monitoring of landfast sea ice extent and thickness in Kongsfjorden, and related applications (FastIce)

    Get PDF
    Landfast sea ice covers the inner parts of Kongsfjorden, Svalbard, for a limited time in winter and spring months, being an important feature for the physical and biological fjord systems. Systematic fast-ice monitoring for Kongsfjorden, as a part of a long-term project at the Norwegian Polar Institute (NPI) was started in 2003, with some more sporadic observations from 1997 to 2002. It includes the ice extent mapping and in situ measurements of ice and snow thickness, and freeboard at several sites in the fjord. The permanent presence of NPI personnel in Ny-Ã…lesund Research Station enables regular in situ fast-ice thickness measurements as long as the fast ice is accessible. Further, daily visits to the observatory on the mountain Zeppelinfjellet close to Ny-Ã…lesund, allow regular ice extent observations (weather, visibility, and daylight permitting). Data collected within this standardized monitoring programme have contributed to a number of studies. Monitoring of the sea-ice conditions in Kongsfjorden can be used to demonstrate and investigate phenomena related to climate change in the Arctic

    Revised ΔR values for the Barents Sea and its archipelagos as a pre-requisite for accurate and robust marine-based 14C chronologies

    Get PDF
    The calibration of marine 14C dates requires the incorporation of regionally specific marine reservoir offsets known as ΔR, essential for accurate and meaningful inter-archive comparisons. Revised, regional ΔR (‘ΔRR’) values for the Barents Sea are presented for molluscs and cetaceans for the two latest iterations of the marine calibration curve, based on previously published pre-bomb live-collected and radiocarbon-dated samples (‘ΔRL’; molluscs: n = 16; cetaceans: n = 18). Molluscan ΔRR, determined for four broad regional oceanographic settings, are: western Svalbard (including Bjørnøya), −61 ± 37 14C yrs (Marine20), 94 ± 38 14C yrs (Marine13); Franz Josef Land, −277 ± 57 14C yrs (Marine20), −122 ± 38 14C yrs (Marine13); Novaya Zemlya, −156 ± 73 14C yrs (Marine20), 0 ± 76 14C yrs (Marine13); northern Norway, −86 ± 39 14C yrs (Marine20), 74 ± 24 14C yrs (Marine13). Molluscan ΔRR values are considered applicable to other marine carbonate materials (e.g., foraminifera, ostracods). Cetacean ΔRR are determined for toothed (n = 10) and baleen (n = 8) whales, and a combined toothed-baleen group (n = 18): toothed, −161 ± 41 14C yrs (Marine20), 1 ± 41 14C yrs (Marine13); baleen, −158 ± 43 14C yrs (Marine20), 8 ± 41 14C yrs (Marine13); combined baleen-toothed whales, −160 ± 41 14C yrs (Marine20), 4 ± 49 14C yrs (Marine13). Where identification and separation of baleen and toothed whales is impossible the combined ΔRR term may be used. However, we explicitly discourage the application of existing cetacean ΔRR terms to other marine mammals. Our new ΔRR values are applicable for as long as those broad oceanographic conditions (circulation and ventilation) have persisted, i.e., through the Holocene. We recommend using the latest iteration of the marine calibration curve, Marine20, which seems to better capture the time-variant nature of R compared to Marine13. More ΔRL datapoints for both molluscs and cetaceans would improve the accuracy and precision of ΔRR. In the meantime, our new ΔR terms facilitate the calibration of marine 14C dates across the region, paving the way for meaningful and accurate late Quaternary histories and inter-regional comparisons.publishedVersio

    Atmospheric-driven state transfer of shore-fast ice in the northeastern Kara Sea

    Get PDF
    Frequencies of observed occurrences of shore-fast ice in the northeastern Kara Sea for each month during 1953–1990 reveal a multimodality of shore-fast ice extent in late winter and spring. The fast ice extent exhibits mainly three different configurations (modes) associated with the regional topography of coasts and islands. These modes show fast ice areas equal to approximately 98 ± 6, 122 ± 6, and 136 ± 8 1000 km2. Analysis of the time series of fast ice extent shows that favorable conditions for expansion of fast ice seaward in winter and spring are met if the atmospheric circulation over the northeastern Kara Sea is controlled by the Arctic high, resulting in offshore winds and a significant (up to 6ºC) decrease of the monthly mean surface air temperature. In contrast, the penetration of the Icelandic low into the Kara Sea, accompanied by Arctic cyclones coming from the west, is responsible for the partial breakup and decrease of fast ice extent in winter or spring
    • …
    corecore