5 research outputs found
Exciton Bound to 1D Intersection of Stacking Fault Plane with a ZnSe Quantum Well
International audienceEmerging part of condensed matter science, which deals with the systems of extreme two-dimensionality, renews the interest in natural 2D objects such as planar stacking faults (SFs) in semiconductor crystals. We report on the observation of an excitonic state localized at the 1D intersection of the SF with a high quality ZnSe quantum well (QW). The micro-photoluminescence measurements are performed in a specimen used for preceding transmission electron microscopy studies. We demonstrate that the observed narrow lines are polarized along SFs and their linewidths depend on the SFs length. For short SFs, the linewidth can be as low as 0.15 meV. Using the combination of the effective mass approach and the density functional theory calculations we show that the exciton localization is due to the intrinsic electric field inside the SF, which also leads to a spatial separation of electron and hole in the exciton. The 1D intersection of perfect natural and artificial 2D objects can serve as a promising playground for the study of subtle excitonic effects in single defects
Study of strange matter production in the heavy ion collisions at NUCLOTRON
It is proposed to install an experimental setup in the fixed-target hall of the Nuclotron with the final goal to perform a research program focused on the production of strange matter in heavyion collisions at beam energies between 2 and 6 A GeV. The basic setup will comprise a large acceptance dipole magnet with inner tracking detector modules based on double-sided Silicon micro-strip sensors and GEMs. The outer tracking will be based on the drift chambers and straw tube detector. Particle identification will be based on the time-of-flight measurements. This setup will be sufficient perform a comprehensive study of strangeness production in heavy-ion collisions, including multi-strange hyperons, multi-strange hypernuclei, and exotic multi-strange heavy objects. These pioneering measurements would provide the first data on the production of these particles in heavy-ion collisions at Nuclotron beam energies, and would open an avenue to explore the third (strangeness) axis of the nuclear chart. The extension of the experimental program is related with the study of in-medium effects for vector mesons decaying in hadronic modes. The studies of the NN and NA reactions for the reference is assumed