11 research outputs found

    Magnetic field and nuclear spin influence on the DNA synthesis rate

    No full text
    Abstract The rate of a chemical reaction can be sensitive to the isotope composition of the reactants, which provides also for the sensitivity of such “spin-sensitive” reactions to the external magnetic field. Here we demonstrate the effect of the external magnetic field on the enzymatic DNA synthesis together with the effect of the spin-bearing magnesium ions ( 25^{25} 25 Mg). The rate of DNA synthesis monotonously decreased with the external magnetic field induction increasing in presence of zero-spin magnesium ions ( 24^{24} 24 Mg). On the contrary, in the presence of the spin-bearing magnesium ions, the dependence of the reaction rate on the magnetic field induction was non-monotonous and possess a distinct minimum at 80–100 mT. To describe the observed effect, we suggested a chemical scheme and biophysical mechanism considering a competition between Zeeman and Fermi interactions in the external magnetic field

    Local Accumulation of Lymphocytes in the Intima of Human Aorta Is Associated with Giant Multinucleated Endothelial Cells: Possible Explanation for Mosaicism of Atherosclerosis

    No full text
    Distribution of different types of atherosclerotic lesions in the arterial wall is not diffuse, but is characterized by mosaicism. The causes of such distribution remain to be established. At the early stages of atherogenesis, low-density lipoprotein (LDL) particles and immune cells penetrate into the intimal layer of the arterial wall through the endothelium. In adult humans, the luminal surface of the arterial wall is a heterogeneous monolayer of cells with varying morphology including typical endothelial cells (ECs) and multinucleated variant endothelial cells (MVECs). We hypothesized that distribution of MVECs in the endothelial monolayer can be related to the distribution pattern of early atherosclerotic lesions. We obtained en face preparations of intact adult (22–59 years old) aortic wall sections that allowed us to study the endothelial monolayer and the subendothelial layer. We compared the distribution of MVECs in the endothelial monolayer with the localization of early atherosclerotic lesions in the subendothelial layer, which were characterized by lipid accumulation and immune cell recruitment. In primary culture, MVECs demonstrated increased phagocytic activity compared to mononuclear ECs. Moreover, we have shown that unaffected aortic intima contained associates formed as a result of aggregation and/or fusion of LDL particles that are non-randomly distributed. This indicated that MVECs may be involved in the accumulation of LDL in the subendothelial layer through increased transcytosis. Interaction of LDL with subendothelial cells of human aorta in primary culture increased their adhesive properties toward circulating immune cells. Study of unaffected aortic intima revealed non-random distribution of leukocytes in the subendothelial layer and increased localization of CD45+ leukocytes in the subendothelial layer adjacent to MVECs. Together, our observations indicate that MVECs may be responsible for the distribution of atherosclerotic lesions in the arterial wall by participating in LDL internalization and immune cell recruitment

    Anti-cancer activity of ultra-short single-stranded polydeoxyribonucleotides

    No full text
    Summary One of the features that differentiate cancer cells is their increased proliferation rate, which creates an opportunity for general anti-tumor therapy directed against the elevated activity of replicative apparatus in tumor cells. Besides DNA synthesis, successful genome replication requires the reparation of the newly synthesized DNA. Malfunctions in reparation can cause fatal injuries in the genome and cell death. Recently we have found that the ultra-short single-stranded deoxyribose polynucleotides of random sequence (ssDNA) effectively inhibit the catalytic activity of DNA polymerase β\beta β . This effect allowed considering these substances as potential anti-tumor drugs, which was confirmed experimentally both in vitro (using cancer cell cultures) and in vivo (using cancer models in mice). According to the obtained results, ssDNA significantly suppresses cancer development and tumor growth, allowing consideration of them as novel candidates for anti-cancer drugs

    Anti-stokes fluorescence of phycobilisome and its complex with the orange carotenoid protein

    No full text
    Phycobilisomes (PBSs) are giant water-soluble light-harvesting complexes of cyanobacteria and red algae, consisting of hundreds of phycobiliproteins precisely organized to deliver the energy of absorbed light to chlorophyll chromophores of the photosynthetic electron-transport chain. Quenching the excess of excitation energy is necessary for the photoprotection of photosynthetic apparatus. In cyanobacteria, quenching of PBS excitation is provided by the Orange Carotenoid Protein (OCP), which is activated under high light conditions. In this work, we describe parameters of anti-Stokes fluorescence of cyanobacterial PBSs in quenched and unquenched states. We compare the fluorescence readout from entire phycobilisomes and their fragments. The obtained results revealed the heterogeneity of conformations of chromophores in isolated phycobiliproteins, while such heterogeneity was not observed in the entire PBS. Under excitation by low-energy quanta, we did not detect a significant uphill energy transfer from the core to the peripheral rods of PBS, while the one from the terminal emitters to the bulk allophycocyanin chromophores is highly probable. We show that this direction of energy migration does not eliminate fluorescence quenching in the complex with OCP. Thus, long-wave excitation provides new insights into the pathways of energy conversion in the phycobilisome

    Twisting of Fibers Balancing the Gel–Sol Transition in Cellulose Aqueous Suspensions

    No full text
    Cellulose hydrogels and films are advantageous materials that are applied in modern industry and medicine. Cellulose hydrogels have a stable scaffold and never form films upon drying, while viscous cellulose hydrosols are liquids that could be used for film production. So, stabilizing either a gel or sol state in cellulose suspensions is a worthwhile challenge, significant for the practical applications. However, there is no theory describing the cellulose fibers’ behavior and processes underlying cellulose-gel-scaffold stabilizing. In this work, we provide a phenomenological mechanism explaining the transition between the stable-gel and shapeless-sol states in a cellulose suspension. We suppose that cellulose macromolecules and nanofibrils under strong dispersing treatment (such as sonication) partially untwist and dissociate, and then reassemble in a 3D scaffold having the individual elements twisted in the nodes. The latter leads to an exponential increase in friction forces between the fibers and to the corresponding fastening of the scaffold. We confirm our theory by the data on the circular dichroism of the cellulose suspensions, as well as by the direct scanning electron microscope (SEM) observations and theoretical assessments

    Probing Red Blood Cell Membrane Microviscosity Using Fluorescence Anisotropy Decay Curves of the Lipophilic Dye PKH26

    No full text
    Red blood cell (RBC) aggregation and deformation are governed by the molecular processes occurring on the membrane. Since several social important diseases are accompanied by alterations in RBC aggregation and deformability, it is important to develop a diagnostic parameter of RBC membrane structural integrity and stability. In this work, we propose membrane microviscosity assessed by time-resolved fluorescence anisotropy of the lipophilic PKH26 fluorescent probe as a diagnostic parameter. We measured the fluorescence decay curves of the PKH26 probe in the RBC membrane to establish the optimal parameters of the developed fluorescence assay. We observed a complex biphasic profile of the fluorescence anisotropy decay characterized by two correlation times corresponding to the rotational diffusion of free PKH26, and membrane-bounded molecules of the probe. The developed assay allowed us to estimate membrane microviscosity ηm in the range of 100–500 cP depending on the temperature, which paves the way for assessing RBC membrane properties in clinical applications as predictors of blood microrheological abnormalities

    Zhurkov’s Stress-Driven Fracture as a Driving Force of the Microcrystalline Cellulose Formation

    No full text
    Microcrystalline cellulose (MCC) is a chemically pure product of cellulose mechano-chemical conversion. It is a white powder composed of the short fragments of the plant cells widely used in the modern food industry and pharmaceutics. The acid hydrolysis of the bleached lignin-free cellulose raw is the main and necessary stage of MCC production. For this reason, the acid hydrolysis is generally accepted to be the driving force of the fragmentation of the initial cellulose fibers into MCC particles. However, the low sensibility of the MCC properties to repeating the hydrolysis forces doubting this point of view. The sharp, cleave-looking edges of the MCC particles suggesting the initial cellulose fibers were fractured; hence the hydrolysis made them brittle. Zhurkov showed that mechanical stress decreases the activation energy of the polymer fracture, which correlates with the elevated enthalpy of the MCC thermal destruction compared to the initial cellulose

    State of the phycobilisome determines effective absorption cross-section of Photosystem II in Synechocystis sp. PCC 6803

    No full text
    Quenching of excess excitation energy is necessary for the photoprotection of light-harvesting complexes. In cyanobacteria, quenching of phycobilisome (PBS) excitation energy is induced by the Orange Carotenoid Protein (OCP), which becomes photoactivated under high light conditions. A decrease in energy transfer efficiency from the PBSs to the reaction centers decreases photosystem II (PS II) activity. However, quantitative analysis of OCPinduced photoprotection in vivo is complicated by similar effects of both photochemical and non-photochemical quenching on the quantum yield of the PBS fluorescence overlapping with the emission of chlorophyll. In the present study, we have analyzed chlorophyll a fluorescence induction to estimate the effective cross-section of PS II and compared the effects of reversible OCP-dependent quenching of PBS fluorescence with reduction of PBS content upon nitrogen starvation or mutations of key PBS components. This approach allowed us to estimate the dependency of the rate constant of PS II primary electron acceptor reduction on the amount of PBSs in the cell. We found that OCP-dependent quenching triggered by blue light affects approximately half of PBSs coupled to PS II, indicating that under normal conditions, the concentration of OCP is not sufficient for quenching of all PBSs coupled to PS II

    Role of hydrogen bond alternation and charge transfer states in photoactivation of the Orange Carotenoid Protein

    No full text
    Here, we propose a possible photoactivation mechanism of a 35-kDa blue light-triggered photoreceptor, the Orange Carotenoid Protein (OCP), suggesting that the reaction involves the transient formation of a protonated ketocarotenoid (oxocarbenium cation) state. Taking advantage of engineering an OCP variant carrying the Y201W mutation, which shows superior spectroscopic and structural properties, it is shown that the presence of Trp201 augments the impact of one critical H-bond between the ketocarotenoid and the protein. This confers an unprecedented homogeneity of the dark-adapted OCP state and substantially increases the yield of the excited photoproduct S*, which is important for the productive photocycle to proceed. A 1.37 Å crystal structure of OCP Y201W combined with femtosecond time-resolved absorption spectroscopy, kinetic analysis, and deconvolution of the spectral intermediates, as well as extensive quantum chemical calculations incorporating the effect of the local electric field, highlighted the role of charge-transfer states during OCP photoconversion
    corecore