2 research outputs found

    Integral Algorithms to Evaluate TiO<sub>2</sub> and N-TiO<sub>2</sub> Thin Films’ Cytocompatibility

    No full text
    Titanium oxide (TiO2) and oxynitride (N-TiO2) coatings can increase nitinol stents’ cytocompatibility with endothelial cells. Methods of TiO2 and N-TiO2 sputtering and cytocompatibility assessments vary significantly among different research groups, making it difficult to compare results. The aim of this work was to develop an integral cytocompatibility index (ICI) and a decision tree algorithm (DTA) using the “EA.hy926 cell/TiO2 or N-TiO2 coating” model and to determine the optimal cytocompatible coating. Magnetron sputtering was performed in a reaction gas medium with various N2:O2 ratios and bias voltages. The samples’ morphology was studied by scanning electron microscopy (SEM) and Raman spectroscopy. The cytocompatibility of the coatings was evaluated in terms of their cytotoxicity, adhesion, viability, and NO production. The ICI and DTA were developed to assess the cytocompatibility of the samples. Both algorithms demonstrated the best cytocompatibility for the sample sputtered at Ubias = 0 V and a gas ratio of N2:O2 = 2:1, in which the rutile phase dominated. The DTA provided more detailed information about the cytocompatibility, which depended on the sputtering mode, surface morphology, and crystalline phase. The proposed mathematical models relate the cytocompatibility and the studied physical characteristics

    Biological Studies of New Implant Materials Based on Carbon and Polymer Carriers with Film Heterostructures Containing Noble Metals

    No full text
    This paper presents pioneering results on the evaluation of noble metal film hetero-structures to improve some functional characteristics of carbon-based implant materials: carbon-composite material (CCM) and carbon-fiber-reinforced polyetheretherketone (CFR-PEEK). Metal-organic chemical vapor deposition (MOCVD) was successfully applied to the deposition of Ir, Pt, and PtIr films on these carriers. A noble metal layer as thin as 1 µm provided clear X-ray imaging of 1–2.5 mm thick CFR-PEEK samples. The coated and pristine CCM and CFR-PEEK samples were further surface-modified with Au and Ag nanoparticles (NPs) through MOCVD and physical vapor deposition (PVD) processes, respectively. The composition and microstructural features, the NPs sizes, and surface concentrations were determined. In vitro biological studies included tests for cytotoxicity and antibacterial properties. A series of samples were selected for subcutaneous implantation in rats (up to 3 months) and histological studies. The bimetallic PtIr-based heterostructures showed no cytotoxicity in vitro, but were less biocompatible due to a dense two-layered fibrous capsule. AuNP heterostructures on CFR-PEEK promoted cell proliferation in vitro and exhibited a strong inhibition of bacterial growth (p < 0.05) and high in vitro biocompatibility, especially Au/Ir structures. AgNP heterostructures showed a more pronounced antibacterial effect, while their in vivo biocompatibility was better than that of the pristine CFR-PEEK, but worse than that of AuNP heterostructures
    corecore