2 research outputs found

    Ethylene-Vinyl Acetate Copolymers as Potential Thermoplastic Modifiers of Photopolymer Compositions

    No full text
    The possibility of using thermoplastic polymers in photopolymer compositions for SLA and DLP is discussed in this article. The diffusion and mutual solubility of uncured systems based on tert-butyl acrylate (tBA) and ethylene-vinyl acetate copolymers (EVA) or low-density polyethylene (LDPE) were studied. The solubility and diffusion of tBA with EVA containing 7, 20, and 40 wt.% vinyl acetate (VA) and with LDPE in the temperature range 20–75 °C were studied by optical micro-interferometry method. Phase diagrams of LDPE–tBA, EVA-7–tBA, and EVA-20–tBA systems were obtained. It is shown that the compositions are characterized by the phase-state diagrams of amorphous separation with the upper critical solution temperature (UCST). The concentration dependences of the interdiffusion coefficients as well as dependences of the self-diffusion coefficients on VA content and on temperature were plotted. The activation energy of self-diffusion of EVA and LDPE was calculated. It was shown that the most promising tBA modifier is EVA-40, which is completely soluble at all studied temperature ranges. The obtained data on the mixing of the initial components is valuable for further studies of the processes of structure formation during photocuring of compositions, regulation of the phase structure and, as a consequence, the performance characteristics of the 3D printable materials

    Influence of the ab-initio calculation parameters on prediction of energy of point defects in silicon

    No full text
    Point defects play a key role in many microelectronics technologies. Knowledge of the properties of point defects and characteristics of their behavior during ion-beam synthesis of microstructures for use in silicon devices allows one to optimize the conditions of their production, improve their quality and the electronic properties. In this situation, of valuable help in studying the properties of point defects is numerical modeling, especially with the use of quantum mechanical methods based on density functional theory approach. The paper describes a systematic study of the effect of various quantum–mechanical simulation approximations on the calculated energy parameters of defects as applied to simple point defects in silicon. We demonstrate that the choice of the form of the exchange–correlation functional has the strongest effect on the predicted defect formation energy, whereas the variation of the other considered approximations is of secondary importance for simulation predictions
    corecore