9 research outputs found

    CARoma therapy: pleasant scents promote safer driving, better mood, and improved well-being in angry drivers

    Get PDF
    Driving is a task that is often affected by emotions. The effect of emotions on driving has been extensively studied. Anger is an emotion that dominates in such investigations. Despite the knowledge on strong links between scents and emotions, few studies have explored the effect of olfactory stimulation in a context of driving. Such an outcome provides HCI practitioners very little knowledge on how to design for emotions using olfactory stimulation in the car. We carried out three studies to select scents of different valence and arousal levels (i.e. rose, peppermint, and civet) and anger eliciting stimuli (i.e. affective pictures and on-road events). We used this knowledge to conduct the fourth user study investigating how the selected scents change the emotional state, well-being, and driving behaviour of drivers in an induced angry state. Our findings enable better decisions on what scents to choose when designing interactions for angry drivers

    I smell trouble: using multiple scents to convey driving-relevant information

    Get PDF
    Cars provide drivers with task-related information (e.g. "Fill gas") mainly using visual and auditory stimuli. However, those stimuli may distract or overwhelm the driver, causing unnecessary stress. Here, we propose olfactory stimulation as a novel feedback modality to support the perception of visual notifications, reducing the visual demand of the driver. Based on previous research, we explore the application of the scents of lavender, peppermint, and lemon to convey three driving-relevant messages (i.e. "Slow down", "Short inter-vehicle distance", "Lane departure"). Our paper is the first to demonstrate the application of olfactory conditioning in the context of driving and to explore how multiple olfactory notifications change the driving behaviour. Our findings demonstrate that olfactory notifications are perceived as less distracting, more comfortable, and more helpful than visual notifications. Drivers also make less driving mistakes when exposed to olfactory notifications. We discuss how these findings inform the design of future in-car user interfaces

    SMELL SPACE:Mapping out the olfactory design space for novel interactions

    Get PDF
    The human sense of smell is powerful. However, the way we use smell as an interaction modality in human–computer interaction (HCI) is limited. We lack a common reference point to guide designers’ choices when using smell. Here, we map out an olfactory design space to provide designers with such guidance. We identified four key design features: (i) chemical, (ii) emotional, (iii) spatial, and (iv) temporal. Each feature defines a building block for smell-based interaction design and is grounded in a review of the relevant scientific literature. We then demonstrate the design opportunities in three application cases. Each application (i.e., one desktop, two virtual reality implementations) highlights the design choices alongside the implementation and evaluation possibilities in using smell. We conclude by discussing how identifying those design features facilitates a healthy growth of this research domain and contributes to an intermediate-level knowledge space. Finally, we discuss further challenges the HCI community needs to tackle

    SmellControl: the study of sense of agency in smell

    Get PDF
    The Sense of Agency (SoA) is crucial in interaction with technology, it refers to the feeling of 'I did that' as opposed to 'the system did that' supporting a feeling of being in control. Research in human-computer interaction has recently studied agency in visual, auditory and haptic interfaces, however the role of smell on agency remains unknown. Our sense of smell is quite powerful to elicit emotions, memories and awareness of the environment, which has been exploited to enhance user experiences (e.g., in VR and driving scenarios). In light of increased interest in designing multimodal interfaces including smell and its close link with emotions, we investigated, for the first time, the effect of smell-induced emotions on the SoA. We conducted a study using the Intentional Binding (IB) paradigm used to measure SoA while participants were exposed to three scents with different valence (pleasant, unpleasant, neutral). Our results show that participants? SoA increased with a pleasant scent compared to neutral and unpleasant scents. We discuss how our results can inform the design of multimodal and future olfactory interfaces
    corecore