2 research outputs found

    Application of Rock Weathering and Colonization by Biota for the Relative Dating of Moraines from the Arid Part of the Russian Altai Mountains

    No full text
    For the Altai Mountains’ region, especially the arid southeastern part of the Russian Altai, the data on glacier fluctuations in the Pleistocene and Holocene are still inconsistent. The study area was the Kargy River’s valley (2288–2387 m a.s.l.), a location that is not currently affected by glaciation and the glacial history of which is poorly studied. Field observations and geomorphological mapping were used to reveal the configuration of Pleistocene moraines. The relative dating method was applied to define the degree of weathering as an indicator of age. Three moraine groups of different ages (presumably MIS 6, MIS 4, and MIS 2) were identified based on a detailed investigation of their morphological features and the use of relative dating approaches. The latter were primarily based on weathering patterns. Data on the rock mineralogy, porosity, and specificity of biological colonization as an agent of weathering were obtained for the moraine debris. The studied moraines were composed of fine-grained schist, in which the specific surface area and fractality (self-similarity) were more developed in the older moraine. The growth of biota (crustose lichen and micromycetes) colonizing the rock surface led to rock disintegration and the accumulation of autochthonous fragments on the rock surface. Despite the fact that the initial stage(s) of moraine weathering affected by biota was fixed, the correlation trends of biota activity and moraine ages were not determined

    Active Region Overheating in Pulsed Quantum Cascade Lasers: Effects of Nonequilibrium Heat Dissipation on Laser Performance

    No full text
    Mid IR Quantum cascade lasers are of high interest for the scientific community due to their unique applications. However, the QCL designs require careful engineering to overcome some crucial disadvantages. One of them is active region (ARn) overheating, which significantly affects laser characteristics, even in the pulsed mode. In this work, we consider the effects related to the nonequilibrium temperature distribution when thermal resistance formalism is irrelevant. We employ the heat equation and discuss the possible limitations and structural features stemming from the chemical composition of the ARn. We show that the presence of solid solutions in the ARn structure fundamentally limits the heat dissipation in pulsed and CW regimes due to their low thermal conductivity compared with binary compounds. Also, the QCL postgrowths affect the thermal properties of a device closer to CW mode, while it is by far less important in the short-pulsed mode
    corecore