56 research outputs found

    Mediator of DNA Damage Checkpoint 1 (MDC1) Contributes to High NaCl-Induced Activation of the Osmoprotective Transcription Factor TonEBP/OREBP

    Get PDF
    Background: Hypertonicity, such as induced by high NaCl, increases the activity of the transcription factor TonEBP/OREBP whose target genes increase osmoprotective organic osmolytes and heat shock proteins. Methodology: We used mass spectrometry to analyze proteins that coimmunoprecipitate with TonEBP/OREBP in order to identify ones that might contribute to its high NaCl-induced activation. Principal Findings: We identified 20 unique peptides from Mediator of DNA Damage Checkpoint 1 (MDC1) with high probability. The identification was confirmed by Western analysis. We used small interfering RNA knockdown of MDC1 to characterize its osmotic function. Knocking down MDC1 reduces high NaCl-induced increases in TonEBP/OREBP transcriptional and transactivating activity, but has no significant effect on its nuclear localization. We confirm six previously known phosphorylation sites in MDC1, but do not find evidence that high NaCl increases phosphorylation of MDC1. It is suggestive that MDC1 acts as a DNA damage response protein since hypertonicity reversibly increases DNA breaks, and other DNA damage response proteins, like ATM, also associate with TonEBP/OREBP and contribute to its activation by hypertonicity. Conclusions/Significance: MDC1 associates with TonEBP/OREBP and contributes to high NaCl-induced increase of tha

    The Transcription Factor NFAT5 Is Required for Cyclin Expression and Cell Cycle Progression in Cells Exposed to Hypertonic Stress

    Get PDF
    Background: Hypertonicity can perturb cellular functions, induce DNA damage-like responses and inhibit proliferation. The transcription factor NFAT5 induces osmoprotective gene products that allow cells to adapt to sustained hypertonic conditions. Although it is known that NFAT5-deficient lymphocytes and renal medullary cells have reduced proliferative capacity and viability under hypertonic stress, less is understood about the contribution of this factor to DNA damage responses and cell cycle regulation. Methodology/Principal Findings: We have generated conditional knockout mice to obtain NFAT5−/− T lymphocytes, which we used as a model of proliferating cells to study NFAT5-dependent responses. We show that hypertonicity triggered an early, NFAT5-independent, genotoxic stress-like response with induction of p53, p21 and GADD45, downregulation of cyclins, and cell cycle arrest. This was followed by an NFAT5-dependent adaptive phase in wild-type cells, which induced an osmoprotective gene expression program, downregulated stress markers, resumed cyclin expression and proliferation, and displayed enhanced NFAT5 transcriptional activity in S and G2/M. In contrast, NFAT5−/− cells failed to induce osmoprotective genes and exhibited poorer viability. Although surviving NFAT5−/− cells downregulated genotoxic stress markers, they underwent cell cycle arrest in G1/S and G2/M, which was associated with reduced expression of cyclins E1, A2 and B1. We also show that pathologic hypertonicity levels, as occurring in plasma of patients and animal models of osmoregulatory disorders, inhibited the induction of cyclins and aurora B kinase in response to T cell receptor stimulation in fresh NFAT5−/− lymphocytes. Conclusions/Significance: We conclude that NFAT5 facilitates cell proliferation under hypertonic conditions by inducing an osmoadaptive response that enables cells to express fundamental regulators needed for cell cycle progression.Molecular and Cellular Biolog

    Hypertonicity counteracts MCL 1 and renders BCL XL a synthetic lethal target in head and neck cancer

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is an aggressive and difficult‐to‐treat cancer entity. Current therapies ultimately aim to activate the mitochondria‐controlled (intrinsic) apoptosis pathway, but complex alterations in intracellular signaling cascades and the extracellular microenvironment hamper treatment response. On the one hand, proteins of the BCL‐2 family set the threshold for cell death induction and prevent accidental cellular suicide. On the other hand, controlling a cell's readiness to die also determines whether malignant cells are sensitive or resistant to anticancer treatments. Here, we show that HNSCC cells upregulate the proapoptotic BH3‐only protein NOXA in response to hyperosmotic stress. Induction of NOXA is sufficient to counteract the antiapoptotic properties of MCL‐1 and switches HNSCC cells from dual BCL‐XL/MCL‐1 protection to exclusive BCL‐XL addiction. Hypertonicity‐induced functional loss of MCL‐1 renders BCL‐XL a synthetically lethal target in HNSCC, and inhibition of BCL‐XL efficiently kills HNSCC cells that poorly respond to conventional therapies. We identify hypertonicity‐induced upregulation of NOXA as link between osmotic pressure in the tumor environment and mitochondrial priming, which could perspectively be exploited to boost efficacy of anticancer drugs

    Ku80 facilitates chromatin binding of the telomere binding protein, TRF2

    No full text
    The Ku70/80 heterodimer is central to non-homologous end joining repair of DNA double-strand breaks and the Ku80 gene appears to be essential for human but not rodent cell survival. The Ku70/80 heterodimer is located at telomeres but its precise function in telomere maintenance is not known. In order to examine the role of Ku80 beyond DNA repair in more detail, we have taken a knockdown approach using a human fibroblast strain. Following targeted Ku80 knockdown, telomere defects are observed and the steady state levels of the TRF2 protein are reduced. Inhibitor studies indicate that this loss of TRF2 is mediated by the proteasome and degradation of TRF2 following Ku depletion appears to involve a decrease in chromatin binding of TRF2, suggesting that the Ku heterodimer enhances TRF2 chromatin association and that non-chromatin bound TRF2 is targeted to the proteasome

    Nek1 kinase functions in DNA damage response and checkpoint control through a pathway independent of ATM and ATR

    No full text
    Never-in-mitosis A related protein kinase 1 (Nek1) is involved early in a DNA damage sensing/repair pathway. We have previously shown that cells without functional Nek1 fail to activate the more distal kinases Chk1 and Chk2 and fail to arrest properly at G1/S or M-phase checkpoints in response to DNA damage. As a consequence, foci of damaged DNA in Nek1 null cells persist long after the instigating insult, and Nek1 null cells develop unstable chromosomes at a rate much higher than identically cultured wild-type cells. Here we show that Nek1 functions independently of canonical DNA damage responses requiring the PI3 kinase-like proteins ATM and ATR. Chemical inhibitors of ATM/ATR or mutation of the genes that encode them fail to alter the kinase activity of Nek1 or its localization to nuclear foci of DNA damage. Moreover ATM and ATR activities, including the localization of the proteins to DNA damage sites and phosphorylation of early DNA damage response substrates, are intact in Nek1−/− murine cells and in human cells with Nek1 expression silenced by siRNA. Our results demonstrate that Nek1 is important for proper checkpoint control and characterize for the first time a DNA damage response that does not directly involve one of the known upstream mediator kinases, ATM or ATR
    corecore