26 research outputs found

    Biosynthesis of d

    No full text

    Approved glycopeptide antibacterial drugs: Mechanism of action and resistance

    No full text
    The glycopeptide antimicrobials are a group of natural product and semisynthetic glycosylated peptides that show antibacterial activity against Gram-positive organisms through inhibition of cell-wall synthesis. This is achieved primarily through binding to the Dalanyl- D-alanine terminus of the lipid II bacterial cell-wall precursor, preventing crosslinking of the peptidoglycan layer. Vancomycin is the foundational member of the class, showing both clinical longevity and a still preferential role in the therapy of methicillinresistant Staphylococcus aureus and of susceptible Enterococcus spp. Newer lipoglycopeptide derivatives (telavancin, dalbavancin, and oritavancin) were designed in a targeted fashion to increase antibacterial activity, in some cases through secondary mechanisms of action. Resistance to the glycopeptides emerged in delayed fashion and occurs via a spectrum of chromosome- and plasmid-associated elements that lead to structural alteration of the bacterial cell-wall precursor substrates

    In Vitro Activity of TD-6424 against Staphylococcus aureus

    No full text
    TD-6424, a rapidly bactericidal agent with multiple mechanisms of action, is more potent in vitro and more rapidly bactericidal than currently available agents against methicillin-susceptible and methicillin-resistant Staphylococcus aureus. TD-6424 produces a postantibiotic effect with a duration of 4 to 6 h against these organisms. The results suggest potential efficacy against susceptible and resistant strains of S. aureus
    corecore