167 research outputs found
A MEMS-based solid propellant microthruster array for space and military applications
Since combustion is an easy way to achieve large quantities of energy from a small volume, we developed a MEMS based solid propellant microthruster array for small spacecraft and micro-air-vehicle applications. A thruster is composed of a fuel chamber layer, a top-side igniter with a micromachined nozzle in the same silicon layer. Layers are assembled by adhesive bonding to give final MEMS array. The thrust force is generated by the combustion of propellant stored in a few millimeter cube chamber. The micro-igniter is a polysilicon resistor deposited on a low stress SiO2/SiNx thin membrane to ensure a good heat transfer to the propellant and thus a low electric power consumption. A large range of thrust force is obtained simply by varying chamber and nozzle geometry parameters in one step of Deep Reactive Ion Etching (DRIE). Experimental tests of ignition and combustion employing home made (DB+x% BP) propellant composed of a Double-Base and Black-Powder. A temperature of 250 therefore degrees C, enough to propellant initiation, is reached for 40 mW of electric power. A combustion rate of about 3.4 mm/s is measured for DB+20% BP propellant and thrust ranges between 0.1 and 3,5 mN are obtained for BP ratio between 10% and 30% using a microthruster of 100 mu m of throat wide
Stability domains of actin genes and genomic evolution
In eukaryotic genes the protein coding sequence is split into several
fragments, the exons, separated by non-coding DNA stretches, the introns.
Prokaryotes do not have introns in their genome. We report the calculations of
stability domains of actin genes for various organisms in the animal, plant and
fungi kingdoms. Actin genes have been chosen because they have been highly
conserved during evolution. In these genes all introns were removed so as to
mimic ancient genes at the time of the early eukaryotic development, i.e.
before introns insertion. Common stability boundaries are found in evolutionary
distant organisms, which implies that these boundaries date from the early
origin of eukaryotes. In general boundaries correspond with introns positions
of vertebrates and other animals actins, but not much for plants and fungi. The
sharpest boundary is found in a locus where fungi, algae and animals have
introns in positions separated by one nucleotide only, which identifies a
hot-spot for insertion. These results suggest that some introns may have been
incorporated into the genomes through a thermodynamic driven mechanism, in
agreement with previous observations on human genes. They also suggest a
different mechanism for introns insertion in plants and animals.Comment: 9 Pages, 7 figures. Phys. Rev. E in pres
Atomic Scale Modeling of Interfacial Structures of PEDOT/PSS
peer reviewedTheoretical calculations are performed in the framework of the interaction between the charged poly(ethylenedioxythiophene) (PEDOT2+) and two p-toluensulfonic acid (TSA-1). The influence of the counterion on the charge distribution in the PEDOT is investigated indicating that a strong influence of the interionic correlation on the stability of PEDOT by TSA. Further several configurations are studied for the interaction between PEDOT and PSS. The calculations indicate that the side assembly is the most stable configuration, however in the presence of the solvent both parallel and side assemblies have similar stability. These results give a new insight about the charge transport conduction in PEDOT/PSS interactions
Molecular Mechanics Study of the Influence of the Alkyl Substituents on the Packing of the Conjugated PEDOT Chains
peer reviewedThe solid state packing of neutral chains of the conjugated polymers is studied by theoretical simulations. The conjugated systems considered here are the pol(3,4-ethylenedioxythiophene (PEDOT) and their substituted PEDOT derivatives PEDOT-C10H21. The molecular mechanics calculations indicate that the polymers tend to form stable p stacks and indicate that the alkyl side groups freeze the conjugated segments and allow a good organization of PEDOT-C10H21 chains. This explains the increase of conductivity in these systems compared to un-substituted PEDOT. Finally, the introduction of one defect in region-regularity causes a steric hindrance, resulting in less order and less compact p-stacking
Modeling of the Solid-State Packing of Charged Chains (PEDOT) in the Presence of the Counterions (TSA) and the Solvent (DEG)
peer reviewedMolecular mechanics and ab-initio calculations are performed in the framework of the interaction between the charged poly(ethylenedioxythiophene) (PEDOT), the p-toluensulphonic acid (TSA), and the diethylene glycol (DEG). Different possibilities of positioning the counterion along the conjugated polymer are studied. For each possibility (or orientation), the influence of relative position of the counterion on the stability of these charged interfaces is considered. The results indicate that the perpendicular orientation corresponds to the most stable structure of the PEDOT/TSA complex. The influence of the counterion on the charge distribution in the PEDOT is also investigated indicating that a strong influence of the interionic correlation on the stability of PEDOT by TSA. Further the packing of doped chains with their counterions is also determined. In the larger aggregates, the effect of the solvent is considered. These results give a new insight about the molecular arrangements of PEDOT/TSA interactions and allow to understand how charge transport along the stacks can take place
The vitamin K-dependent anticoagulant factor, protein S, regulates vascular permeability
Protein S (PROS1) is a vitamin K-dependent anticoagulant factor, which also acts as an agonist for the TYRO3, AXL, and MERTK (TAM) tyrosine kinase receptors. PROS1 is produced by the endothelium which also expresses TAM receptors, but little is known about its effects on vascular function and permeability. Transwell permeability assays as well as Western blotting and immunostaining analysis were used to monitor the possible effects of PROS1 on both endothelial cell permeability and on the phosphorylation state of specific signaling proteins. We show that human PROS1, at its circulating concentrations, substantially increases both the basal and VEGFA-induced permeability of endothelial cell (EC) monolayers. PROS1 induces p38 MAPK (Mitogen Activated Protein Kinase), Rho/ROCK (Rho-associated protein kinase) pathway activation, and actin filament remodeling, as well as substantial changes in Vascular Endothelial Cadherin (VEC) distribution and its phosphorylation on Ser665 and Tyr685. It also mediates c-Src and PAK-1 (p21-activated kinase 1) phosphorylation on Tyr416 and Ser144, respectively. Exposure of EC to human PROS1 induces VEC internalization as well as its cleavage into a released fragment of 100 kDa and an intracellular fragment of 35 kDa. Using anti-TAM neutralizing antibodies, we demonstrate that PROS1-induced VEC and c-Src phosphorylation are mediated by both the MERTK and TYRO3 receptors but do not involve the AXL receptor. MERTK and TYRO3 receptors are also responsible for mediating PROS1-induced MLC (Myosin Light Chain) phosphorylation on a site targeted by the Rho/ROCK pathway. Our report provides evidence for the activation of the c-Src/VEC and Rho/ROCK/MLC pathways by PROS1 for the first time and points to a new role for PROS1 as an endogenous vascular permeabilizing factor
Early Presymptomatic and Long-Term Changes of Rest Activity Cycles and Cognitive Behavior in a MPTP-Monkey Model of Parkinson's Disease
It is increasingly recognized that non-motor symptoms are a prominent feature of Parkinson's disease and in the case of cognitive deficits can precede onset of the characteristic motor symptoms. Here, we examine in 4 monkeys chronically treated with low doses of the neurotoxin MPTP the early and long-term alterations of rest-activity rhythms in relationship to the appearance of motor and cognitive symptoms.Behavioral activity recordings as well as motor and cognitive assessments were carried out continuously and in parallel before, during and for several months following MPTP-treatment (12–56 weeks). Cognitive abilities were assessed using a task that is dependent on the functional integrity of the fronto-striatal axis. Rest-activity cycles were monitored continuously using infrared movement detectors of locomotor activity. Motor impairment was evaluated using standardized scales for primates. Results show that MPTP treatment led to an immediate alteration (within one week) of rest-activity cycles and cognitive deficits. Parkinsonian motor deficits only became apparent 3 to 5 weeks after initiating chronic MPTP administration. In three of the four animals studied, clinical scores returned to control levels 5–7 weeks following cessation of MPTP treatment. In contrast, both cognitive deficits and chronobiological alterations persisted for many months. Levodopa treatment led to an improvement of cognitive performance but did not affect rest-activity rhythms in the two cases tested.Present results show that i) changes in the rest activity cycles constituted early detectable consequences of MPTP treatment and, along with cognitive alterations, characterize the presymptomatic stage; ii) following motor recovery there is a long-term persistence of non-motor symptoms that could reflect differential underlying compensatory mechanisms in these domains; iii) the progressive MPTP-monkey model of presymptomatic ongoing parkinsonism offers possibilities for in-depth studies of early non-motor symptoms including sleep alterations and cognitive deficits
Evolution of Melanopsin Photoreceptors: Discovery and Characterization of a New Melanopsin in Nonmammalian Vertebrates
In mammals, the melanopsin gene (Opn4) encodes a sensory photopigment that underpins newly discovered inner retinal photoreceptors. Since its first discovery in Xenopus laevis and subsequent description in humans and mice, melanopsin genes have been described in all vertebrate classes. Until now, all of these sequences have been considered representatives of a single orthologous gene (albeit with duplications in the teleost fish). Here, we describe the discovery and functional characterisation of a new melanopsin gene in fish, bird, and amphibian genomes, demonstrating that, in fact, the vertebrates have evolved two quite separate melanopsins. On the basis of sequence similarity, chromosomal localisation, and phylogeny, we identify our new melanopsins as the true orthologs of the melanopsin gene previously described in mammals and term this grouping Opn4m. By contrast, the previously published melanopsin genes in nonmammalian vertebrates represent a separate branch of the melanopsin family which we term Opn4x. RT-PCR analysis in chicken, zebrafish, and Xenopus identifies expression of both Opn4m and Opn4x genes in tissues known to be photosensitive (eye, brain, and skin). In the day-14 chicken eye, Opn4m mRNA is found in a subset of cells in the outer nuclear, inner nuclear, and ganglion cell layers, the vast majority of which also express Opn4x. Importantly, we show that a representative of the new melanopsins (chicken Opn4m) encodes a photosensory pigment capable of activating G protein signalling cascades in a light- and retinaldehyde-dependent manner under heterologous expression in Neuro-2a cells. A comprehensive in silico analysis of vertebrate genomes indicates that while most vertebrate species have both Opn4m and Opn4x genes, the latter is absent from eutherian and, possibly, marsupial mammals, lost in the course of their evolution as a result of chromosomal reorganisation. Thus, our findings show for the first time that nonmammalian vertebrates retain two quite separate melanopsin genes, while mammals have just one. These data raise important questions regarding the functional differences between Opn4x and Opn4m pigments, the associated adaptive advantages for most vertebrate species in retaining both melanopsins, and the implications for mammalian biology of lacking Opn4x
Brain Responses to Violet, Blue, and Green Monochromatic Light Exposures in Humans: Prominent Role of Blue Light and the Brainstem
BACKGROUND: Relatively long duration retinal light exposure elicits nonvisual responses in humans, including modulation of alertness and cognition. These responses are thought to be mediated in part by melanopsin-expressing retinal ganglion cells which are more sensitive to blue light than violet or green light. The contribution of the melanopsin system and the brain mechanisms involved in the establishment of such responses to light remain to be established. METHODOLOGY/PRINCIPAL FINDINGS: We exposed 15 participants to short duration (50 s) monochromatic violet (430 nm), blue (473 nm), and green (527 nm) light exposures of equal photon flux (10(13)ph/cm(2)/s) while they were performing a working memory task in fMRI. At light onset, blue light, as compared to green light, increased activity in the left hippocampus, left thalamus, and right amygdala. During the task, blue light, as compared to violet light, increased activity in the left middle frontal gyrus, left thalamus and a bilateral area of the brainstem consistent with activation of the locus coeruleus. CONCLUSION/SIGNIFICANCE: These results support a prominent contribution of melanopsin-expressing retinal ganglion cells to brain responses to light within the very first seconds of an exposure. The results also demonstrate the implication of the brainstem in mediating these responses in humans and speak for a broad involvement of light in the regulation of brain function
Diversity of Color Vision: Not All Australian Marsupials Are Trichromatic
Color vision in marsupials has recently emerged as a particularly interesting case among mammals. It appears that there are both dichromats and trichromats among closely related species. In contrast to primates, marsupials seem to have evolved a different type of trichromacy that is not linked to the X-chromosome. Based on microspectrophotometry and retinal whole-mount immunohistochemistry, four trichromatic marsupial species have been described: quokka, quenda, honey possum, and fat-tailed dunnart. It has, however, been impossible to identify the photopigment of the third cone type, and genetically, all evidence so far suggests that all marsupials are dichromatic. The tammar wallaby is the only Australian marsupial to date for which there is no evidence of a third cone type. To clarify whether the wallaby is indeed a dichromat or trichromatic like other Australian marsupials, we analyzed the number of cone types in the “dichromatic” wallaby and the “trichromatic” dunnart. Employing identical immunohistochemical protocols, we confirmed that the wallaby has only two cone types, whereas 20–25% of cones remained unlabeled by S- and LM-opsin antibodies in the dunnart retina. In addition, we found no evidence to support the hypothesis that the rod photopigment (rod opsin) is expressed in cones which would have explained the absence of a third cone opsin gene. Our study is the first comprehensive and quantitative account of color vision in Australian marsupials where we now know that an unexpected diversity of different color vision systems appears to have evolved
- …