4 research outputs found

    Of macrophages and red blood cells; a complex love story

    Get PDF
    Macrophages tightly control the production and clearance of red blood cells (RBC). During steady state hematopoiesis, approximately 10(10) RBC are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with interactions that are essential for erythroid development. New evidence suggests that not only under homeostasis but also under stress conditions, macrophages play an important role in promoting erythropoiesis. Once RBC have matured, these cells remain in circulation for about 120 days. At the end of their life span, RBC are cleared by macrophages residing in the spleen and the liver. Current theories about the removal of senescent RBC and the essential role of macrophages will be discussed as well as the role of macrophages in facilitating the removal of damaged cellular content from the RBC. In this review we will provide an overview on the role of macrophages in the regulation of RBC production, maintenance and clearance. In addition, we will discuss the interactions between these two cell types during transfer of immune complexes and pathogens from RBC to macrophages

    Therapeutic plasma apheresis: Expertise and indications

    No full text
    Therapeutic apheresis is an extracorporeal treatment that is capable of removing pathogenic blood components from patients that causes morbidity. In this review an overview is given of the types of indications for which therapeutic plasma exchange is effective. Furthermore, practical and effective topics, as well as complications will be discussed

    Comparison of three radiotherapy modalities on biochemical control and overall survival for the treatment of prostate cancer: A systematic review

    No full text
    Background and Purpose: For the radiation treatment of prostate cancer high dose should be delivered for optimal biochemical control. Treatment can be given by dose-escalated external beam radiotherapy (EBRT) or external beam radiotherapy combined with a radioactive seed implantation (EBSeeds) or high-dose rate (HDR) brachytherapy (EBTI). Differences in outcome between the modalities were assessed by a systematic review. Materials and methods: A systematic search was performed resulting in 40 articles to be used. Data were extracted on biochemical control and overall survival at 3, 5, and 8 years and other time points mentioned in the articles. Also known prognostic parameters were noted. Comparison of the modalities was done by a Weibull survival analysis and estimation of Hazard Ratio's (HR) was done with 95% confidence intervals (95% CIs). Results: The HR for biochemical recurrence was 1.40 (95% CI 1.31-1.51) for EBRT relative to EBTI, and was 1.37 (95% CI 1.26-1.49) for EBSeeds relative to EBTI. The HR for overall survival was 1.50 (95% CI 1.29-1.73) for EBRT relative to EBTI, and was 2.33 (95% CI 2.04-2.66) for EBSeeds relative to EBTI. Conclusion: The combination of external beam radiotherapy and HDR brachytherapy results in a superior biochemical control and overall survival found in a systematic review on radiotherapy for prostate cancer. (C) 2009 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology 93 (2009) 168-17

    A method for red blood cell biotinylation in a closed system

    No full text
    Several circumstances require the accurate measurement of red blood cell (RBC) survival and clearance, such as determination of posttransfusion recovery of stored RBCs to investigate the effect of new additive solutions. To this end, biotin as a marker of RBCs to track donor RBCs in the blood of the recipient has been used in many studies. However, so far only experimental, nonvalidated, biotin-labeled red cell concentrates (RCCs) are transfused. The goal of this study was to produce a standardized biotin-labeled RCC product in a fast, simple, and sterile manner that can be used for clinical research and for the evaluation of new blood products according to Good Practice Guidelines (GPG) for blood establishments. RCC fractions were labeled with two different concentrations of biotinylation reagent in a closed system, to prevent bacterial contamination of the end product. Using flow cytometry, the reproducibility and robustness of the biotin labeling was assessed, as well as the stability of the biotin label on the (un-)irradiated RCC fraction. Additionally, parameters such as phosphatidylserine (PS) exposure, sodium (Na), potassium (K), free hemoglobin, adenosine triphosphate (ATP), pH, and morphology were determined prior to and after biotin labeling to rule out detrimental effects of the labeling procedure on the RCC. Our data show that RCCs can be labeled under sterile conditions in a closed system with two different biotinylation reagent concentrations, without affecting the biological activity. An easy, rapid ( <2 hr), and robust method was developed to manufacture biotin-labeled RCCs for clinical research compliant to GP
    corecore