10 research outputs found
Composite Likelihood for Stochastic Migration Model with Unobserved Factor
We introduce the conditional Maximum Composite Likelihood (MCL) estimation
method for the stochastic factor ordered Probit model of credit rating
transitions of firms. This model is recommended for internal credit risk
assessment procedures in banks and financial institutions under the Basel III
regulations. Its exact likelihood function involves a high-dimensional
integral, which can be approximated numerically before maximization. However,
the estimated migration risk and required capital tend to be sensitive to the
quality of this approximation, potentially leading to statistical regulatory
arbitrage. The proposed conditional MCL estimator circumvents this problem and
maximizes the composite log-likelihood of the factor ordered Probit model. We
present three conditional MCL estimators of different complexity and examine
their consistency and asymptotic normality when n and T tend to infinity. The
performance of these estimators at finite T is examined and compared with a
granularity-based approach in a simulation study. The use of the MCL estimator
is also illustrated in an empirical application
Comovements in the Real Activity of Developed and Emerging Economies: A Test of Global versus Specific International Factors
Although globalization has shaped the world economy in recent decades, emerging economies have experienced impressive growth compared to developed economies, suggesting a decoupling between developed and emerging business cycles. Using observed developed and emerging economy activity variables, we investigate whether the latter assertion can be supported by observed data. Based on a two-level factor model, we assume these activity variables can be decomposed into a global component, emerging or developed common component and idiosyncratic national shocks. We propose a statistical test for the null hypothesis of a one-level specification, where it is irrelevant to distinguish between emerging and developed latent factors against the two-level alternative. This paper provides a theoretical justification and simulations that document the testing procedure. An application of the test to a panel of developed and emerging countries leads to strong statistical evidence of decoupling
Model Selection in Factor-Augmented Regressions with Estimated Factors
This paper proposes two consistent model selection procedures for factor-augmented regressions in finite samples. We first demonstrate that the usual cross-validation is inconsistent, but that a generalization, leave-d-out cross-validation, selects the smallest basis for the space spanned by the true factors. The second proposed criterion is a generalization of the bootstrap approximation of the squared error of prediction of Shao (1996) to factor-augmented regressions. We show that this procedure is consistent. Simulation evidence documents improvements in the probability of selecting the smallest set of estimated factors than the usually available methods. An illustrative empirical application that analyzes the relationship between expected stock returns and factors extracted from a large panel of United States macroeconomic and financial data is conducted. Our new procedures select factors that correlate heavily with interest rate spreads and with the Fama-French factors. These factors have strong predictive power for excess returns
Méthodes de Bootstrap pour les modèles à facteurs
Cette thèse développe des méthodes bootstrap pour les modèles à facteurs qui sont couram-
ment utilisés pour générer des prévisions depuis l'article pionnier de Stock et Watson (2002)
sur les indices de diffusion. Ces modèles tolèrent l'inclusion d'un grand nombre de variables
macroéconomiques et financières comme prédicteurs, une caractéristique utile pour inclure di-
verses informations disponibles aux agents économiques. Ma thèse propose donc des outils éco-
nométriques qui améliorent l'inférence dans les modèles à facteurs utilisant des facteurs latents
extraits d'un large panel de prédicteurs observés. Il est subdivisé en trois chapitres complémen-
taires dont les deux premiers en collaboration avec SĂlvia Gonçalves et Benoit Perron.
Dans le premier article, nous étudions comment les méthodes bootstrap peuvent être utilisées
pour faire de l'inférence dans les modèles de prévision pour un horizon de h périodes dans le
futur. Pour ce faire, il examine l'inférence bootstrap dans un contexte de régression augmentée
de facteurs où les erreurs pourraient être autocorrélées. Il généralise les résultats de Gonçalves
et Perron (2014) et propose puis justifie deux approches basées sur les résidus : le block wild
bootstrap et le dependent wild bootstrap. Nos simulations montrent une amélioration des taux
de couverture des intervalles de confiance des coefficients estimés en utilisant ces approches
comparativement à la théorie asymptotique et au wild bootstrap en présence de corrélation
sérielle dans les erreurs de régression.
Le deuxième chapitre propose des méthodes bootstrap pour la construction des intervalles
de prévision permettant de relâcher l'hypothèse de normalité des innovations. Nous y propo-
sons des intervalles de prédiction bootstrap pour une observation h périodes dans le futur et sa
moyenne conditionnelle. Nous supposons que ces prévisions sont faites en utilisant un ensemble
de facteurs extraits d'un large panel de variables. Parce que nous traitons ces facteurs comme
latents, nos prévisions dépendent à la fois des facteurs estimés et les coefficients de régres-
sion estimés. Sous des conditions de régularité, Bai et Ng (2006) ont proposé la construction
d'intervalles asymptotiques sous l'hypothèse de Gaussianité des innovations. Le bootstrap nous
permet de relâcher cette hypothèse et de construire des intervalles de prédiction valides sous des
hypothèses plus gĂ©nĂ©rales. En outre, mĂŞme en supposant la GaussianitĂ©, le bootstrap conduit Ă
des intervalles plus précis dans les cas où la dimension transversale est relativement faible car il
prend en considération le biais de l'estimateur des moindres carrés ordinaires comme le montre
une étude récente de Gonçalves et Perron (2014).
Dans le troisième chapitre, nous suggérons des procédures de sélection convergentes pour
les regressions augmentées de facteurs en échantillons finis. Nous démontrons premièrement
que la méthode de validation croisée usuelle est non-convergente mais que sa généralisation,
la validation croisée «leave-d-out» sélectionne le plus petit ensemble de facteurs estimés pour
l'espace généré par les vraies facteurs. Le deuxième critère dont nous montrons également la
validité généralise l'approximation bootstrap de Shao (1996) pour les regressions augmentées de facteurs. Les simulations montrent une amélioration de la probabilité de sélectionner par-
cimonieusement les facteurs estimés comparativement aux méthodes de sélection disponibles.
L'application empirique revisite la relation entre les facteurs macroéconomiques et financiers, et
l'excès de rendement sur le marché boursier américain. Parmi les facteurs estimés à partir d'un
large panel de données macroéconomiques et financières des États Unis, les facteurs fortement
correlés aux écarts de taux d'intérêt et les facteurs de Fama-French ont un bon pouvoir prédictif
pour les excès de rendement.This thesis develops bootstrap methods for factor models which are now widely used for generating forecasts since the seminal paper of Stock and Watson (2002) on diffusion indices. These models allow the inclusion of a large set of macroeconomic and financial variables as predictors, useful to span various information related to economic agents. My thesis develops econometric tools that improves inference in factor-augmented regression models driven by few unobservable factors estimated from a large panel of observed predictors. It is subdivided into three complementary chapters. The two first chapters are joint papers with SĂlvia Gonçalves and Benoit Perron.
In the first chapter, we study how bootstrap methods can be used to make inference in h-step forecasting models which generally involve serially correlated errors. It thus considers bootstrap inference in a factor-augmented regression context where the errors could potentially be serially correlated. This generalizes results in Gonçalves and Perron (2013) and makes the bootstrap applicable to forecasting contexts where the forecast horizon is greater than one. We propose and justify two residual-based approaches, a block wild bootstrap (BWB) and a dependent wild bootstrap (DWB). Our simulations document improvement in coverage rates of confidence intervals for the coefficients when using BWB or DWB relative to both asymptotic theory and the wild bootstrap when serial correlation is present in the regression errors.
The second chapter provides bootstrap methods for prediction intervals which allow relaxing the normality distribution assumption on innovations. We propose bootstrap prediction intervals for an observation h periods into the future and its conditional mean. We assume that these forecasts are made using a set of factors extracted from a large panel of variables. Because we treat these factors as latent, our forecasts depend both on estimated factors and
estimated regression coefficients. Under regularity conditions, Bai and Ng (2006) proposed the construction of asymptotic intervals under Gaussianity of the innovations. The bootstrap allows us to relax this assumption and to construct valid prediction intervals under more general conditions. Moreover, even under Gaussianity, the bootstrap leads to more accurate intervals in cases where the cross-sectional dimension is relatively small as it reduces the bias of the ordinary least squares estimator as shown in a recent paper by Gonçalves and Perron (2014).
The third chapter proposes two consistent model selection procedures for factor-augmented regressions in finite samples.We first demonstrate that the usual cross-validation is inconsistent, but that a generalization, leave-d-out cross-validation, selects the smallest basis of estimated factors for the space spanned by the true factors. The second proposed criterion is a generalization of the bootstrap approximation of the squared error of prediction of Shao (1996) to
factor-augmented regressions which we also show is consistent. Simulation evidence documents improvements in the probability of selecting the smallest set of estimated factors than the usually available methods. An illustrative empirical application that analyzes the relationship between expected stock returns and macroeconomic and financial factors extracted from a large panel of U.S. macroeconomic and financial data is conducted. Our new procedures select factors
that correlate heavily with interest rate spreads and with the Fama-French factors. These factors have strong predictive power for excess returns
Validity of Wild Bootstrap Inference with Clustered Errors
We study asymptotic inference based on cluster-robust variance estimators for regression models with clustered errors, focusing on the wild cluster bootstrap and the ordinary wild bootstrap. We state conditions under which both asymptotic and bootstrap tests and confidence intervals will be asymptotically valid. These conditions put limits on the rates at which the cluster sizes can increase as the number of clusters tends to infinity. To include power in the analysis, we allow the data to be generated under sequences of local alternatives. Simulation experiments illustrate the theoretical results and show that all methods can work poorly in certain cases
Asymptotic Theory and Wild Bootstrap Inference with Clustered Errors
We study asymptotic inference based on cluster-robust variance estimators for regression models with clustered errors, focusing on the wild cluster bootstrap and the ordinary wild bootstrap. We state conditions under which both asymptotic and bootstrap tests and confidence intervals will be asymptotically valid. These conditions put limits on the rates at which the cluster sizes can increase as the number of clusters tends to infinity. To include power in the analysis, we allow the data to be generated under sequences of local alternatives. Under a somewhat stronger set of conditions, we also derive formal Edgeworth expansions for the asymptotic and bootstrap test statistics. Simulation experiments illustrate the theoretical results, and the Edgeworth expansions explain the overrejection of the asymptotic test and shed light on the choice of auxiliary distribution for the wild bootstrap
MINT-data-v20230208
A public repository for the model simulation data used in MINT, the malaria intervention tool, found here.
This dataset contains 2,540,160 model simulations from a malaria transmission dynamics model varying mosquito bionomics, malaria prevalence, transmission seasonality, history of insecticide-treated nets and indoor residual spraying, and projected vector control coverage. The dataset was created by running the model, varying parameters to represent the diversity of settings in malaria-endemic sub-Saharan Africa, and the projections resulting from these simulations are incorporated into Version 2 of the online malaria decision-making tool MINT.
Full details of this update to MINT can be found in the article "Projecting Epidemiological Benefit of Pyrethroid-Pyrrole Insecticide Treated Nets Against Malaria" (Churcher et al. 2023)