121 research outputs found
Health promoting potential of herbal teas and tinctures from Artemisia campestris subsp maritima: from traditional remedies to prospective products
This work explored the biotechnological potential of the medicinal halophyte Artemisia campestris subsp. maritima (dune wormwood) as a source of health promoting commodities. For that purpose, infusions, decoctions and tinctures were prepared from roots and aerial-organs and evaluated for in vitro antioxidant, anti-diabetic and tyrosinase-inhibitory potential, and also for polyphenolic and mineral contents and toxicity. The dune wormwood extracts had high polyphenolic content and several phenolics were identified by ultra-high performance liquid chromatography-photodiode array-mass-spectrometry (UHPLC-PDA-MS). The main compounds were quinic, chlorogenic and caffeic acids, coumarin sulfates and dicaffeoylquinic acids; several of the identified phytoconstituents are here firstly reported in this A. campestris subspecies. Results obtained with this plant's extracts point to nutritional applications as mineral supplementary source, safe for human consumption, as suggested by the moderate to low toxicity of the extracts towards mammalian cell lines. The dune wormwood extracts had in general high antioxidant activity and also the capacity to inhibit a-glucosidase and tyrosinase. In summary, dune wormwood extracts are a significant source of polyphenolic and mineral constituents, antioxidants and a-glucosidase and tyrosinase inhibitors, and thus, relevant for different commercial segments like the pharmaceutical, cosmetic and/or food industries.FCT - Foundation for Science and Technology [CCMAR/Multi/04326/2013]; Portuguese National Budget; FCT [IF/00049/2012, SFRH/BD/94407/2013]; Research Foundation - Flanders (FWO) [12M8315N]info:eu-repo/semantics/publishedVersio
Phytochemicals as antibiotic alternatives to promote growth and enhance host health
There are heightened concerns globally on emerging drug-resistant superbugs and the lack of new antibiotics for treating human and animal diseases. For the agricultural industry, there is an urgent need to develop strategies to replace antibiotics for food-producing animals, especially poultry and livestock. The 2nd International Symposium on Alternatives to Antibiotics was held at the World Organization for Animal Health in Paris, France, December 12-15, 2016 to discuss recent scientific developments on strategic antibiotic-free management plans, to evaluate regional differences in policies regarding the reduction of antibiotics in animal agriculture and to develop antibiotic alternatives to combat the global increase in antibiotic resistance. More than 270 participants from academia, government research institutions, regulatory agencies, and private animal industries from >25 different countries came together to discuss recent research and promising novel technologies that could provide alternatives to antibiotics for use in animal health and production; assess challenges associated with their commercialization; and devise actionable strategies to facilitate the development of alternatives to antibiotic growth promoters (AGPs) without hampering animal production. The 3-day meeting consisted of four scientific sessions including vaccines, microbial products, phytochemicals, immune-related products, and innovative drugs, chemicals and enzymes, followed by the last session on regulation and funding. Each session was followed by an expert panel discussion that included industry representatives and session speakers. The session on phytochemicals included talks describing recent research achievements, with examples of successful agricultural use of various phytochemicals as antibiotic alternatives and their mode of action in major agricultural animals (poultry, swine and ruminants). Scientists from industry and academia and government research institutes shared their experience in developing and applying potential antibiotic-alternative phytochemicals commercially to reduce AGPs and to develop a sustainable animal production system in the absence of antibiotics.Fil: Lillehoj, Hyun. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Liu, Yanhong. University of California; Estados UnidosFil: Calsamiglia, Sergio. Universitat Autònoma de Barcelona; EspañaFil: Fernandez Miyakawa, Mariano Enrique. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. Instituto Nacional de TecnologĂa Agropecuaria. Centro de InvestigaciĂłn en Ciencias Veterinarias y AgronĂłmicas. Instituto de PatobiologĂa; ArgentinaFil: Chi, Fang. Amlan International; Estados UnidosFil: Cravens, Ron L.. Amlan International; Estados UnidosFil: Oh, Sungtaek. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Gay, Cyril G.. United States Department of Agriculture. Agricultural Research Service; Argentin
Phytochemical studies and antioxidant activity of two South African medicinal plants traditionally used for the management of opportunistic fungal infections in HIV/AIDS patients
<p>Abstract</p> <p>Background</p> <p>It has been observed that perturbations in the antioxidant defense systems, and consequently redox imbalance, are present in many tissues of HIV-infected patients. Hence, the exogenous supply of antioxidants, as natural compounds that scavenge free radicals, might represent an important additional strategy for the treatment of HIV infection. The aim of this study was therefore to analyse the phytochemical constituents and antioxidant potential of <it>Gasteria bicolor </it>Haw and <it>Pittosporum viridiflorum </it>Sims., two South African plants traditionally used for the management of opportunistic fungal infections (OFIs) in AIDS patients.</p> <p>Methods</p> <p>The <it>in vitro </it>antioxidant properties of the two plants were screened through DPPH (1,1-diphenyl-2-picrylhydrazyl), NO (nitric oxide), H<sub>2</sub>O<sub>2 </sub>(hydrogen peroxide) radical scavenging effects and reducing power assays. Phytochemical studies were done by spectrophotometric techniques.</p> <p>Results</p> <p>There were no significant differences in the flavonoid and proanthocyanidins contents between the leaves and bark extracts of <it>Gasteria bicolor </it>and <it>Pittosporum viridiflorum </it>respectively, while the total phenolic content of the bark extract of <it>P. viridiflorum </it>was significantly higher than that of <it>G. bicolor </it>leaf. The acetone extracts of both plants indicated strong antioxidant activities.</p> <p>Conclusion</p> <p>The results from this study indicate that the leaves and stem extracts of <it>Gasteria bicolor </it>and <it>Pittosporum viridiflorum </it>respectively possess antioxidant properties and could serve as free radical inhibitors, acting possibly as primary antioxidants. Since reactive oxygen species are thought to be associated with the pathogenesis of AIDS, and HIV-infected individuals often have impaired antioxidant defenses, the inhibitory effect of the extracts on free radicals may partially justify the traditional use of these plants in the management of OFIs in HIV patients in South Africa.</p
Radiosensitising effect of electrochemotherapy with bleomycin in LPB sarcoma cells and tumors in mice
BACKGROUND: Bleomycin is poorly permeant but potent cytotoxic and radiosensitizing drug. The aim of the study was to evaluate whether a physical drug delivery system – electroporation can increase radiosensitising effect of bleomycin in vitro and in vivo. METHODS: LPB sarcoma cells and tumors were treated either with bleomycin, electroporation or ionizing radiation, and combination of these treatments. In vitro, response to different treatments was determined by colony forming assay, while in vivo, treatment effectiveness was determined by local tumor control (TCD(50)). Time dependence of partial oxygen pressure in LPB tumors after application of electric pulses was measured by electron paramagnetic oxyimetry. RESULTS: Electroporation of cells in vitro increased radiosensitising effect of bleomycin for 1.5 times, in vivo radiation response of tumors was enhanced by 1.9 fold compared to response of tumors that were irradiated only. Neither treatment of tumors with bleomycin nor application of electric pulses only, affected radiation response of tumors. Application of electric pulses to the tumors induced profound but transient reduction of tumor oxygenation. Although tumor oxygenation after electroporation partially restored at the time of irradiation, it was still reduced at the level of radiobiologically relevant hypoxia. CONCLUSION: Our study shows that application of electric pulses to cells and tumors increases radiosensitising effect of bleomycin. Furthermore, our results demonstrate that the radiobiologically relevant hypoxia induced by electroporation of tumors did not counteract the pronounced radiosensitising effect of electrochemotherapy with bleomycin
Lactic acid fermentation as a tool to enhance the antioxidant properties of Myrtus communis berries
Background: Myrtle (Myrtus communis L.) is a medicinal and aromatic plant belonging to Myrtaceae family, which
is largely diffused in the Mediterranean areas and mainly cultivated in Tunisia and Italy. To the best of our knowledge, no
studies have already considered the use of the lactic acid fermentation to enhance the functional features of M.
communis. This study aimed at using a selected lactic acid bacterium for increasing the antioxidant features of myrtle
berries, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation.
The antioxidant activity was preliminarily evaluated through in vitro assays, further confirmed through ex vivo analysis on
murine fibroblasts, and the profile of phenol compounds was characterized.
Results: Myrtle berries homogenate, containing yeast extract (0.4%, wt/vol), was fermented with Lactobacillus plantarum
C2, previously selected from plant matrix. Chemically acidified homogenate, without bacterial inoculum and incubated
under the same conditions, was used as the control. Compared to the control, fermented myrtle homogenate exhibited
a marked antioxidant activity in vitro. The radical scavenging activity towards DPPH increased by 30%, and the
inhibition of linoleic acid peroxidation was twice. The increased antioxidant activity was confirmed using Balb 3 T3
mouse fibroblasts, after inducing oxidative stress, and determining cell viability and radical scavenging activity
through MTT and DCFH-DA assays, respectively. The lactic acid fermentation allowed increased concentrations of total
phenols, flavonoids and anthocyanins, which were 5–10 times higher than those found for the non-fermented and
chemically acidified control. As shown by HPLC analysis, the main increases were found for gallic and ellagic acids, and
flavonols (myricetin and quercetin). The release of these antioxidant compounds would be strictly related to the
esterase activities of L. plantarum.
Conclusions: The lactic acid fermentation of myrtle berries is a suitable tool for novel applications as functional
food dietary supplements or pharmaceutical preparations
Onicomicose: estudo clĂnico, epidemiolĂłgico e micolĂłgico no municĂpio de SĂŁo JosĂ© do Rio Preto
- …