493 research outputs found
Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification
We report on the use of an interferometric weak value technique to amplify
very small transverse deflections of an optical beam. By entangling the beam's
transverse degrees of freedom with the which-path states of a Sagnac
interferometer, it is possible to realize an optical amplifier for polarization
independent deflections. The theory for the interferometric weak value
amplification method is presented along with the experimental results, which
are in good agreement. Of particular interest, we measured the angular
deflection of a mirror down to 560 femtoradians and the linear travel of a
piezo actuator down to 20 femtometers
Precision frequency measurements with interferometric weak values
We demonstrate an experiment which utilizes a Sagnac interferometer to
measure a change in optical frequency of 129 kHz per root Hz with only 2 mW of
continuous wave, single mode input power. We describe the measurement of a weak
value and show how even higher frequency sensitivities may be obtained over a
bandwidth of several nanometers. This technique has many possible applications,
such as precision relative frequency measurements and laser locking without the
use of atomic lines.Comment: 4 pages, 3 figures, published in PR
Optimizing the Signal to Noise Ratio of a Beam Deflection Measurement with Interferometric Weak Values
The amplification obtained using weak values is quantified through a detailed
investigation of the signal to noise ratio for an optical beam deflection
measurement. We show that for a given deflection, input power and beam radius,
the use of interferometric weak values allows one to obtain the optimum signal
to noise ratio using a coherent beam. This method has the advantage of reduced
technical noise and allows for the use of detectors with a low saturation
intensity. We report on an experiment which improves the signal to noise ratio
for a beam deflection measurement by a factor of 54 when compared to a
measurement using the same beam size and a quantum limited detector
Realization of an all-optical zero to π cross-phase modulation jump
We report on the experimental demonstration of an all-optical π cross-phase modulation jump. By performing a preselection, an optically induced unitary transformation, and then a postselection on the polarization degree of freedom, the phase of the output beam acquires either a zero or π phase shift (with no other possible values). The postselection results in optical loss in the output beam. An input state may be chosen near the resulting phase singularity, yielding a pi phase shift even for weak interaction strengths. The scheme is experimentally demonstrated using a coherently prepared dark state in a warm atomic cesium vapor
Continuous phase amplification with a Sagnac interferometer
We describe a weak value inspired phase amplification technique in a Sagnac
interferometer. We monitor the relative phase between two paths of a slightly
misaligned interferometer by measuring the average position of a split-Gaussian
mode in the dark port. Although we monitor only the dark port, we show that the
signal varies linearly with phase and that we can obtain similar sensitivity to
balanced homodyne detection. We derive the source of the amplification both
with classical wave optics and as an inverse weak value.Comment: 5 pages, 4 figures, previously submitted for publicatio
Interferometric weak value deflections: quantum and classical treatments
We derive the weak value deflection given in a paper by Dixon et al. (Phys.
Rev. Lett. 102, 173601 (2009)) both quantum mechanically and classically. This
paper is meant to cover some of the mathematical details omitted in that paper
owing to space constraints
Quantum Mutual Information Capacity for High-Dimensional Entangled States
High-dimensional Hilbert spaces used for quantum communication channels offer the possibility of large data transmission capabilities. We propose a method of characterizing the channel capacity of an entangled photonic state in high-dimensional position and momentum bases. We use this method to measure the channel capacity of a parametric down-conversion state by measuring in up to 576 dimensions per detector. We achieve a channel capacity over 7  bits/photon in either the position or momentum basis. Furthermore, we provide a correspondingly high-dimensional separability bound that suggests that the channel performance cannot be replicated classically
Quantum Mutual Information Capacity for High Dimensional Entangled States
High dimensional Hilbert spaces used for quantum communication channels offer
the possibility of large data transmission capabilities. We propose a method of
characterizing the channel capacity of an entangled photonic state in high
dimensional position and momentum bases. We use this method to measure the
channel capacity of a parametric downconversion state, achieving a channel
capacity over 7 bits/photon in either the position or momentum basis, by
measuring in up to 576 dimensions per detector. The channel violated an
entropic separability bound, suggesting the performance cannot be replicated
classically.Comment: 5 pages, 2 figure
Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification
We report on the use of an interferometric weak value technique to amplify very small transverse deflections of an optical beam. By entangling the beam’s transverse degrees of freedom with the which-path states of a Sagnac interferometer, it is possible to realize an optical amplifier for polarization independent deflections. The theory for the interferometric weak value amplification method is presented along with the experimental results, which are in good agreement. Of particular interest, we measured the angular deflection of a mirror down to 40
Precision Frequency Measurements with Interferometric Weak Values
We demonstrate an experiment which utilizes a Sagnac interferometer to measure a change in optical frequency of 129 ± 7 kHz/√Hz with only 2 mW of continuous-wave, single-mode input power. We describe the measurement of a weak value and show how even higher-frequency sensitivities may be obtained over a bandwidth of several nanometers. This technique has many possible applications, such as precision relative frequency measurements and laser locking without the use of atomic lines
- …