13,905 research outputs found

    Dynamic weight parameter for the Random Early Detection (RED) in TCP networks

    Get PDF
    This paper presents the Weighted Random Early Detection (WTRED) strategy for congestion handling in TCP networks. WTRED provides an adjustable weight parameter to increase the sensitivity of the average queue size in RED gateways to the changes in the actual queue size. This modification, over the original RED proposal, helps gateways minimize the mismatch between average and actual queue sizes in router buffers. WTRED is compared with RED and FRED strategies using the NS-2 simulator. The results suggest that WTRED outperforms RED and FRED. Network performance has been measured using throughput, link utilization, packet loss and delay

    Radiative Hydrodynamic Simulations of HD209458b: Temporal Variability

    Full text link
    We present a new approach for simulating the atmospheric dynamics of the close-in giant planet HD209458b that allows for the decoupling of radiative and thermal energies, direct stellar heating of the interior, and the solution of the full 3D Navier Stokes equations. Simulations reveal two distinct temperature inversions (increasing temperature with decreasing pressure) at the sub-stellar point due to the combined effects of opacity and dynamical flow structure and exhibit instabilities leading to changing velocities and temperatures on the nightside for a range of viscosities. Imposed on the quasi-static background, temperature variations of up to 15% are seen near the terminators and the location of the coldest spot is seen to vary by more than 20 degrees, occasionally appearing west of the anti-solar point. Our new approach introduces four major improvements to our previous methods including simultaneously solving both the thermal energy and radiative equations in both the optical and infrared, incorporating updated opacities, including a more accurate treatment of stellar energy deposition that incorporates the opacity relevant for higher energy stellar photons, and the addition of explicit turbulent viscosity.Comment: Accepted for publication in Ap

    Atmospheric Dynamics of Short-period Extra Solar Gas Giant Planets I: Dependence of Night-Side Temperature on Opacity

    Full text link
    More than two dozen short-period Jupiter-mass gas giant planets have been discovered around nearby solar-type stars in recent years, several of which undergo transits, making them ideal for the detection and characterization of their atmospheres. Here we adopt a three-dimensional radiative hydrodynamical numerical scheme to simulate atmospheric circulation on close-in gas giant planets. In contrast to the conventional GCM and shallow water algorithms, this method does not assume quasi hydrostatic equilibrium and it approximates radiation transfer from optically thin to thick regions with flux-limited diffusion. In the first paper of this series, we consider synchronously-spinning gas giants. We show that a full three-dimensional treatment, coupled with rotationally modified flows and an accurate treatment of radiation, yields a clear temperature transition at the terminator. Based on a series of numerical simulations with varying opacities, we show that the night-side temperature is a strong indicator of the opacity of the planetary atmosphere. Planetary atmospheres that maintain large, interstellar opacities will exhibit large day-night temperature differences, while planets with reduced atmospheric opacities due to extensive grain growth and sedimentation will exhibit much more uniform temperatures throughout their photosphere's. In addition to numerical results, we present a four-zone analytic approximation to explain this dependence.Comment: 35 Pages, 13 Figure

    Social cost considerations and legal constraints in implementing modular integrated utility systems

    Get PDF
    Social costs associated with the design, demonstration, and implementation of the Modular Integrated Utility System are considered including the social climate of communities, leadership patterns, conflicts and cleavages, specific developmental values, MIUS utility goal assessment, and the suitability of certian alternative options for use in a program of implementation. General considerations are discussed in the field of socio-technological planning. These include guidelines for understanding the conflict and diversity; some relevant goal choices and ideas useful to planners of the MIUS facility

    Tidal Barrier and the Asymptotic Mass of Proto Gas-Giant Planets

    Full text link
    Extrasolar planets found with radial velocity surveys have masses ranging from several Earth to several Jupiter masses. While mass accretion onto protoplanetary cores in weak-line T-Tauri disks may eventually be quenched by a global depletion of gas, such a mechanism is unlikely to have stalled the growth of some known planetary systems which contain relatively low-mass and close-in planets along with more massive and longer period companions. Here, we suggest a potential solution for this conundrum. In general, supersonic infall of surrounding gas onto a protoplanet is only possible interior to both of its Bondi and Roche radii. At a critical mass, a protoplanet's Bondi and Roche radii are equal to the disk thickness. Above this mass, the protoplanets' tidal perturbation induces the formation of a gap. Although the disk gas may continue to diffuse into the gap, the azimuthal flux across the protoplanets' Roche lobe is quenched. Using two different schemes, we present the results of numerical simulations and analysis to show that the accretion rate increases rapidly with the ratio of the protoplanet's Roche to Bondi radii or equivalently to the disk thickness. In regions with low geometric aspect ratios, gas accretion is quenched with relatively low protoplanetary masses. This effect is important for determining the gas-giant planets' mass function, the distribution of their masses within multiple planet systems around solar type stars, and for suppressing the emergence of gas-giants around low mass stars

    Role of proton irradiation and relative air humidity on iron corrosion

    Full text link
    This paper presents a study of the effects of proton irradiation on iron corrosion. Since it is known that in humid atmospheres, iron corrosion is enhanced by the double influence of air and humidity, we studied the iron corrosion under irradiation with a 45% relative humidity. Three proton beam intensities (5, 10 and 20 nA) were used. To characterise the corrosion layer, we used ion beam methods (Rutherford Backscattering Spectrometry (RBS), Elastic Recoil Detection Analysis (ERDA)) and X-ray Diffraction (XRD) analysis. The corrosion kinetics are plotted for each proton flux. A diffusion model of the oxidant species is proposed, taking into account the fact that the flux through the surface is dependent on the kinetic factor K. This model provides evidence for the dependence of the diffusion coefficient, D, and the kinetic factor, K, on the proton beam intensity. Comparison of the values for D with the diffusion coefficients for thermal oxygen diffusion in iron at 300 K suggests an enhancement due to irradiation of 6 orders of magnitude

    Buckling Testing and Analysis of Honeycomb Sandwich Panel Arc Segments of a Full-Scale Fairing Barrel Part 4: Six-ply Out-of-Autoclave Facesheets

    Get PDF
    Four honeycomb sandwich panel types, representing 1/16th arc segments of a 10-m diameter barrel section of the Heavy Lift Launch Vehicle (HLLV), were manufactured and tested under the NASA Composites for Exploration program and the NASA Constellation Ares V program. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.000 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: in-autoclave IM7/977-3 and out-of-autoclave T40-800b/5320-1. Smaller 3 ft. by 5 ft. panels were cut from the 1/16th barrel sections. These panels were tested under compressive loading at the NASA Langley Research Center (LaRC). Furthermore, linear eigenvalue and geometrically nonlinear finite element analyses were performed to predict the compressive response of each 3 ft. by 5 ft. panel. This manuscript summarizes the experimental and analytical modeling efforts pertaining to the panels composed of 6-ply, T40-800b/5320-1 facesheets (referred to as Panels D). To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear models yield good qualitative and quantitative predictions. Additionally, it was correctly predicted that the panel would fail in buckling prior to failing in strength. Furthermore, three-dimensional (3D) effects on the compressive response of the panel were studied

    Tonic inhibition of accumbal spiny neurons by extrasynaptic 4 GABAA receptors modulates the actions of psychostimulants

    Get PDF
    Within the nucleus accumbens (NAc), synaptic GABAA receptors (GABAARs) mediate phasic inhibition of medium spiny neurons (MSNs) and influence behavioral responses to cocaine. We demonstrate that both dopamine D1- and D2-receptor-expressing MSNs (D-MSNs) additionally harbor extrasynaptic GABAARs incorporating α4, ÎČ, and ÎŽ subunits that mediate tonic inhibition, thereby influencing neuronal excitability. Both the selective ÎŽ-GABAAR agonist THIP and DS2, a selective positive allosteric modulator, greatly increased the tonic current of all MSNs from wild-type (WT), but not from ή−/− or α4−/− mice. Coupling dopamine and tonic inhibition, the acute activation of D1 receptors (by a selective agonist or indirectly by amphetamine) greatly enhanced tonic inhibition in D1-MSNs but not D2-MSNs. In contrast, prolonged D2 receptor activation modestly reduced the tonic conductance of D2-MSNs. Behaviorally, WT and constitutive α4−/− mice did not differ in their expression of cocaine-conditioned place preference (CPP). Importantly, however, mice with the α4 deletion specific to D1-expressing neurons (α4D1−/−) showed increased CPP. Furthermore, THIP administered systemically or directly into the NAc of WT, but not α4−/− or α4D1−/− mice, blocked cocaine enhancement of CPP. In comparison, α4D2−/− mice exhibited normal CPP, but no cocaine enhancement. In conclusion, dopamine modulation of GABAergic tonic inhibition of D1- and D2-MSNs provides an intrinsic mechanism to differentially affect their excitability in response to psychostimulants and thereby influence their ability to potentiate conditioned reward. Therefore, α4ÎČÎŽ GABAARs may represent a viable target for the development of novel therapeutics to better understand and influence addictive behaviors

    Innermost Stable Circular Orbit of a Spinning Particle in Kerr Spacetime

    Get PDF
    We study stability of a circular orbit of a spinning test particle in a Kerr spacetime. We find that some of the circular orbits become unstable in the direction perpendicular to the equatorial plane, although the orbits are still stable in the radial direction. Then for the large spin case ($S < \sim O(1)), the innermost stable circular orbit (ISCO) appears before the minimum of the effective potential in the equatorial plane disappears. This changes the radius of ISCO and then the frequency of the last circular orbit.Comment: 25 pages including 8 figure
    • 

    corecore