13,905 research outputs found
Dynamic weight parameter for the Random Early Detection (RED) in TCP networks
This paper presents the Weighted Random Early Detection (WTRED) strategy for congestion handling in TCP networks. WTRED provides an adjustable weight parameter to increase the sensitivity of the average queue size in RED gateways to the changes in the actual queue size. This modification, over the original RED proposal, helps gateways minimize the mismatch between average and actual queue sizes in router buffers. WTRED is compared with RED and FRED strategies using the NS-2 simulator. The results suggest that WTRED outperforms RED and FRED. Network performance has been measured using throughput, link utilization, packet loss and delay
Radiative Hydrodynamic Simulations of HD209458b: Temporal Variability
We present a new approach for simulating the atmospheric dynamics of the
close-in giant planet HD209458b that allows for the decoupling of radiative and
thermal energies, direct stellar heating of the interior, and the solution of
the full 3D Navier Stokes equations. Simulations reveal two distinct
temperature inversions (increasing temperature with decreasing pressure) at the
sub-stellar point due to the combined effects of opacity and dynamical flow
structure and exhibit instabilities leading to changing velocities and
temperatures on the nightside for a range of viscosities. Imposed on the
quasi-static background, temperature variations of up to 15% are seen near the
terminators and the location of the coldest spot is seen to vary by more than
20 degrees, occasionally appearing west of the anti-solar point. Our new
approach introduces four major improvements to our previous methods including
simultaneously solving both the thermal energy and radiative equations in both
the optical and infrared, incorporating updated opacities, including a more
accurate treatment of stellar energy deposition that incorporates the opacity
relevant for higher energy stellar photons, and the addition of explicit
turbulent viscosity.Comment: Accepted for publication in Ap
Atmospheric Dynamics of Short-period Extra Solar Gas Giant Planets I: Dependence of Night-Side Temperature on Opacity
More than two dozen short-period Jupiter-mass gas giant planets have been
discovered around nearby solar-type stars in recent years, several of which
undergo transits, making them ideal for the detection and characterization of
their atmospheres. Here we adopt a three-dimensional radiative hydrodynamical
numerical scheme to simulate atmospheric circulation on close-in gas giant
planets. In contrast to the conventional GCM and shallow water algorithms, this
method does not assume quasi hydrostatic equilibrium and it approximates
radiation transfer from optically thin to thick regions with flux-limited
diffusion. In the first paper of this series, we consider
synchronously-spinning gas giants. We show that a full three-dimensional
treatment, coupled with rotationally modified flows and an accurate treatment
of radiation, yields a clear temperature transition at the terminator. Based on
a series of numerical simulations with varying opacities, we show that the
night-side temperature is a strong indicator of the opacity of the planetary
atmosphere. Planetary atmospheres that maintain large, interstellar opacities
will exhibit large day-night temperature differences, while planets with
reduced atmospheric opacities due to extensive grain growth and sedimentation
will exhibit much more uniform temperatures throughout their photosphere's. In
addition to numerical results, we present a four-zone analytic approximation to
explain this dependence.Comment: 35 Pages, 13 Figure
Social cost considerations and legal constraints in implementing modular integrated utility systems
Social costs associated with the design, demonstration, and implementation of the Modular Integrated Utility System are considered including the social climate of communities, leadership patterns, conflicts and cleavages, specific developmental values, MIUS utility goal assessment, and the suitability of certian alternative options for use in a program of implementation. General considerations are discussed in the field of socio-technological planning. These include guidelines for understanding the conflict and diversity; some relevant goal choices and ideas useful to planners of the MIUS facility
Tidal Barrier and the Asymptotic Mass of Proto Gas-Giant Planets
Extrasolar planets found with radial velocity surveys have masses ranging
from several Earth to several Jupiter masses. While mass accretion onto
protoplanetary cores in weak-line T-Tauri disks may eventually be quenched by a
global depletion of gas, such a mechanism is unlikely to have stalled the
growth of some known planetary systems which contain relatively low-mass and
close-in planets along with more massive and longer period companions. Here, we
suggest a potential solution for this conundrum. In general, supersonic infall
of surrounding gas onto a protoplanet is only possible interior to both of its
Bondi and Roche radii. At a critical mass, a protoplanet's Bondi and Roche
radii are equal to the disk thickness. Above this mass, the protoplanets' tidal
perturbation induces the formation of a gap. Although the disk gas may continue
to diffuse into the gap, the azimuthal flux across the protoplanets' Roche lobe
is quenched. Using two different schemes, we present the results of numerical
simulations and analysis to show that the accretion rate increases rapidly with
the ratio of the protoplanet's Roche to Bondi radii or equivalently to the disk
thickness. In regions with low geometric aspect ratios, gas accretion is
quenched with relatively low protoplanetary masses. This effect is important
for determining the gas-giant planets' mass function, the distribution of their
masses within multiple planet systems around solar type stars, and for
suppressing the emergence of gas-giants around low mass stars
Role of proton irradiation and relative air humidity on iron corrosion
This paper presents a study of the effects of proton irradiation on iron
corrosion. Since it is known that in humid atmospheres, iron corrosion is
enhanced by the double influence of air and humidity, we studied the iron
corrosion under irradiation with a 45% relative humidity. Three proton beam
intensities (5, 10 and 20 nA) were used. To characterise the corrosion layer,
we used ion beam methods (Rutherford Backscattering Spectrometry (RBS), Elastic
Recoil Detection Analysis (ERDA)) and X-ray Diffraction (XRD) analysis. The
corrosion kinetics are plotted for each proton flux. A diffusion model of the
oxidant species is proposed, taking into account the fact that the flux through
the surface is dependent on the kinetic factor K. This model provides evidence
for the dependence of the diffusion coefficient, D, and the kinetic factor, K,
on the proton beam intensity. Comparison of the values for D with the diffusion
coefficients for thermal oxygen diffusion in iron at 300 K suggests an
enhancement due to irradiation of 6 orders of magnitude
Buckling Testing and Analysis of Honeycomb Sandwich Panel Arc Segments of a Full-Scale Fairing Barrel Part 4: Six-ply Out-of-Autoclave Facesheets
Four honeycomb sandwich panel types, representing 1/16th arc segments of a 10-m diameter barrel section of the Heavy Lift Launch Vehicle (HLLV), were manufactured and tested under the NASA Composites for Exploration program and the NASA Constellation Ares V program. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.000 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: in-autoclave IM7/977-3 and out-of-autoclave T40-800b/5320-1. Smaller 3 ft. by 5 ft. panels were cut from the 1/16th barrel sections. These panels were tested under compressive loading at the NASA Langley Research Center (LaRC). Furthermore, linear eigenvalue and geometrically nonlinear finite element analyses were performed to predict the compressive response of each 3 ft. by 5 ft. panel. This manuscript summarizes the experimental and analytical modeling efforts pertaining to the panels composed of 6-ply, T40-800b/5320-1 facesheets (referred to as Panels D). To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear models yield good qualitative and quantitative predictions. Additionally, it was correctly predicted that the panel would fail in buckling prior to failing in strength. Furthermore, three-dimensional (3D) effects on the compressive response of the panel were studied
Tonic inhibition of accumbal spiny neurons by extrasynaptic 4 GABAA receptors modulates the actions of psychostimulants
Within the nucleus accumbens (NAc), synaptic GABAA receptors (GABAARs) mediate phasic inhibition of medium spiny neurons (MSNs) and influence behavioral responses to cocaine. We demonstrate that both dopamine D1- and D2-receptor-expressing MSNs (D-MSNs) additionally harbor extrasynaptic GABAARs incorporating α4, ÎČ, and ÎŽ subunits that mediate tonic inhibition, thereby influencing neuronal excitability. Both the selective ÎŽ-GABAAR agonist THIP and DS2, a selective positive allosteric modulator, greatly increased the tonic current of all MSNs from wild-type (WT), but not from ÎŽâ/â or α4â/â mice. Coupling dopamine and tonic inhibition, the acute activation of D1 receptors (by a selective agonist or indirectly by amphetamine) greatly enhanced tonic inhibition in D1-MSNs but not D2-MSNs. In contrast, prolonged D2 receptor activation modestly reduced the tonic conductance of D2-MSNs. Behaviorally, WT and constitutive α4â/â mice did not differ in their expression of cocaine-conditioned place preference (CPP). Importantly, however, mice with the α4 deletion specific to D1-expressing neurons (α4D1â/â) showed increased CPP. Furthermore, THIP administered systemically or directly into the NAc of WT, but not α4â/â or α4D1â/â mice, blocked cocaine enhancement of CPP. In comparison, α4D2â/â mice exhibited normal CPP, but no cocaine enhancement. In conclusion, dopamine modulation of GABAergic tonic inhibition of D1- and D2-MSNs provides an intrinsic mechanism to differentially affect their excitability in response to psychostimulants and thereby influence their ability to potentiate conditioned reward. Therefore, α4ÎČÎŽ GABAARs may represent a viable target for the development of novel therapeutics to better understand and influence addictive behaviors
Innermost Stable Circular Orbit of a Spinning Particle in Kerr Spacetime
We study stability of a circular orbit of a spinning test particle in a Kerr
spacetime. We find that some of the circular orbits become unstable in the
direction perpendicular to the equatorial plane, although the orbits are still
stable in the radial direction. Then for the large spin case ($S < \sim O(1)),
the innermost stable circular orbit (ISCO) appears before the minimum of the
effective potential in the equatorial plane disappears. This changes the radius
of ISCO and then the frequency of the last circular orbit.Comment: 25 pages including 8 figure
- âŠ