2,018 research outputs found
Environmentally Friendly Machining
Environment-Friendly Machining provides an in-depth overview of environmentally-friendly machining processes, covering numerous different types of machining in order to identify which practice is the most environmentally sustainable. The book discusses three systems at length: machining with minimal cutting fluid, air-cooled machining and dry machining. Also covered is a way to conserve energy during machining processes, along with useful data and detailed descriptions for developing and utilizing the most efficient modern machining tools. Researchers and engineers looking for sustainable machining solutions will find Environment-Friendly Machining to be a useful volume
Electronic autoionization and vibrational-state distributions in resonant multiphoton ionization of H2
We investigate the effects of electronic autoionization on the vibrational branching ratios in resonant multiphoton ionization of H2. Ab initio calculations are performed to obtain the vibrational branching ratios for (3+1) resonant-enhanced multiphoton ionization (REMPI) of H2 via the C 1Πu state. Our calculations include the effects of the dissociative 1Πg(1σu1πu) autoionizing state and properly account for the interference between the direct and the indirect (autoionization) channels. We find that the direct and indirect amplitudes are comparable for excitation via the higher (vi≥2) vibrational levels of the C state. Autoionization greatly enhances the branching ratios for Δv≠0 transitions. These calculations underscore the necessity for a proper treatment of both the direct and indirect contributions in understanding the REMPI of molecules via autoionizing states
Gas-liquid transition in the model of particles interacting at high energy
An application of the ideas of the inertial confinement fusion process in the
case of particles interacting at high energy is investigated. A possibility of
the gas-liquid transition in the gas is considered using different approaches.
In particular, a shock wave description of interactions between particles is
studied and a self-similar solution of Euler's equation is discussed.
Additionally, Boltzmann equation is solved for self-consistent field (Vlasov's
equation) in linear approximation for the case of a gas under external pressure
and the corresponding change of Knudsen number of the system is calculated.Comment: 24 pages, 2 figur
Structure of the mirror nuclei Be and B in a microscopic cluster model
The structure of the mirror nuclei Be and B is studied in a
microscopic and three-cluster model
using a fully antisymmetrized 9-nucleon wave function. The two-nucleon
interaction includes central and spin-orbit components and the Coulomb
potential. The ground state of Be is obtained accurately with the
stochastic variational method, while several particle-unbound states of both
Be and B are investigated with the complex scaling method.The
calculation for Be supports the recent identification for the existence of
two broad states around 6.5 MeV, and predicts the and
states at about 4.5 MeV and 8 MeV, respectively. The
similarity of the calculated spectra of Be and B enables one to
identify unknown spins and parities of the B states. Available data on
electromagnetic moments and elastic electron scatterings are reproduced very
well. The enhancement of the 1 transition of the first excited state in
Be is well accounted for. The calculated density of Be is found to
reproduce the reaction cross section on a Carbon target. The analysis of the
beta decay of Li to Be clearly shows that the wave function of Be
must contain a small component that cannot be described by the simple model. This small component can be well accounted for by extending a
configuration space to include the distortion of the -particle to
and partitions.Comment: 24 page
Theory of excited state absorptions in phenylene-based -conjugated polymers
Within a rigid-band correlated electron model for oligomers of
poly-(paraphenylene) (PPP) and poly-(paraphenylenevinylene) (PPV), we show that
there exist two fundamentally different classes of two-photon A states in
these systems to which photoinduced absorption (PA) can occur. At relatively
lower energies there occur A states which are superpositions of one
electron - one hole (1e--1h) and two electron -- two hole (2e--2h) excitations,
that are both comprised of the highest delocalized valence band and the lowest
delocalized conduction band states only. The dominant PA is to one specific
member of this class of states (the mA). In addition to the above class of
A states, PA can also occur to a higher energy kA state whose 2e--2h
component is {\em different} and has significant contributions from excitations
involving both delocalized and localized bands. Our calculated scaled energies
of the mA and the kA agree reasonably well to the experimentally
observed low and high energy PAs in PPV. The calculated relative intensities of
the two PAs are also in qualitative agreement with experiment. In the case of
ladder-type PPP and its oligomers, we predict from our theoretical work a new
intense PA at an energy considerably lower than the region where PA have been
observed currently. Based on earlier work that showed that efficient
charge--carrier generation occurs upon excitation to odd--parity states that
involve both delocalized and localized bands, we speculate that it is the
characteristic electronic nature of the kA that leads to charge generation
subsequent to excitation to this state, as found experimentally.Comment: Revtex4 style, 2 figures inserted in the text, three tables, 10 page
Increasing Dominance - the Role of Advertising, Pricing and Product Design
Despite the empirical relevance of advertising strategies in concentrated markets, the economics literature is largely silent on the effect of persuasive advertising
strategies on pricing, market structure and increasing (or decreasing) dominance. In a simple model of persuasive advertising and pricing with differentiated goods,
we analyze the interdependencies between ex-ante asymmetries in consumer appeal, advertising and prices. Products with larger initial appeal to consumers will
be advertised more heavily but priced at a higher level - that is, advertising and price discounts are strategic substitutes for products with asymmetric initial appeal.
We find that the escalating effect of advertising dominates the moderating effect of pricing so that post-competition market shares are more asymmetric than pre-competition differences in consumer appeal. We further find that collusive advertising (but competitive pricing) generates the same market outcomes, and that network effects lead to even more extreme market outcomes, both directly and via
the effect on advertising
A magnetically-driven piston pump for ultra-clean applications
A magnetically driven piston pump for xenon gas recirculation is presented.
The pump is designed to satisfy extreme purity and containment requirements, as
is appropriate for the recirculation of isotopically enriched xenon through the
purification system and large liquid xenon TPC of EXO-200. The pump, using
sprung polymer gaskets, is capable of pumping more than 16 standard liters per
minute (SLPM) of xenon gas with 750 torr differential pressure.Comment: 6 pages, 5 figure
A case study on risk and return implications of emissions trading in power generation investments
This paper explores quantitative implications of the European Union Emissions Trading Scheme (EU ETS) on power capacity investment appraisal in a deregulated market. Risk and return of three different types of power plants, a gas-fired condensing power plant; a hydro power plant with a reservoir; and an off-shore wind power farm, are studied and compared in the regulatory environment of Finland. A single-firm exogenous and stochastic price model is used to simulate possible market outcomes. The model runs suggest that emissions trading increases the expected return of all three power plant technologies. The increase in risk is significant only in the case of the gas-fired power plant. Keywords
Characterization of thrombospondin synthesis, secretion and cell surface expression by human tumor cells
Previous studies have shown that thrombospondin (TSP) is an adhesion factor for some human tumor cells. The previous studies have shown further that tumor cells which utilize TSP as an adhesion factor also synthesize it. This study continues the effort to understand how TSP production and expression are regulated in human tumor cells and the consequences of this for the cells. It is shown that differences among cell lines in their capacity to biosynthesize TSP are associated with differences in TSP specific mRNA levels. This indicates that biosynthesis is regulated at the transcriptional level. There is also a direct relationship between TSP biosynthesis and secretion into the culture medium and expression at the cell surface. The cells which are the most biosynthetically active secrete amounts of TSP into the culture medium that are sufficient to elicit a detectable response in the cell-substrate adhesion assay. The kinetics of TSP secretion by these cells are in accord with the kinetics of attachment and spreading of the same cells in the absence of exogenous adhesion factors. These data are consistent with the idea that endogenously produced TSP promotes the adhesion of the cells which synthesize it in an autocrine manner.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42595/1/10585_2005_Article_BF01753679.pd
- …