128 research outputs found

    Advanced Strategies for the Regeneration of Lumbar Disc Annulus Fibrosus.

    Full text link
    Damage to the annulus fibrosus (AF), the outer region of the intervertebral disc (IVD), results in an undesirable condition that may accelerate IVD degeneration causing low back pain. Despite intense research interest, attempts to regenerate the IVD have failed so far and no effective strategy has translated into a successful clinical outcome. Of particular significance, the failure of strategies to repair the AF has been a major drawback in the regeneration of IVD and nucleus replacement. It is unlikely to secure regenerative mediators (cells, genes, and biomolecules) and artificial nucleus materials after injection with an unsealed AF, as IVD is exposed to significant load and large deformation during daily activities. The AF defects strongly change the mechanical properties of the IVD and activate catabolic routes that are responsible for accelerating IVD degeneration. Therefore, there is a strong need to develop effective therapeutic strategies to prevent or reconstruct AF damage to support operational IVD regenerative strategies and nucleus replacement. By the way of this review, repair and regenerative strategies for AF reconstruction, their current status, challenges ahead, and future outlooks were discussed

    Elastic fibers: The missing key to improve engineering concepts for reconstruction of the Nucleus Pulposus in the intervertebral disc.

    Full text link
    The increasing prevalence of low back pain has imposed a heavy economic burden on global healthcare systems. Intense research activities have been performed for the regeneration of the Nucleus Pulposus (NP) of the IVD; however, tissue-engineered scaffolds have failed to capture the multi-scale structural hierarchy of the native tissue. The current study revealed for the first time, that elastic fibers form a network across the NP consisting of straight and thick parallel fibers that were interconnected by wavy fine fibers and strands. Both straight fibers and twisted strands were regularly merged or branched to form a fine elastic network across the NP. As a key structural feature, ultrathin (53 ± 7 nm), thin (215 ± 20 nm), and thick (890 ± 12 nm) elastic fibers were observed in the NP. While our quantitative analysis for measurement of the thickness of elastic fibers revealed no significant differences (p < 0.633), the preferential orientation of fibers was found to be significantly different (p < 0.001) across the NP. The distribution of orientation for the elastic fibers in the NP represented one major organized angle of orientation except for the central NP. We found that the distribution of elastic fibers in the central NP was different from those located in the peripheral regions representing two symmetrically organized major peaks (±45⁰). No significant differences in the maximum fiber count at the major angles of orientation (±45⁰) were observed for both peripheral (p = 0.427) and central NP (p = 0.788). Based on these new findings a structural model for the elastic fibers in the NP was proposed. The geometrical presentation, along with the distribution of elastic fibers orientation, resulting from the present study identifies the ultrastructural organization of elastic fibers in the NP important towards understanding their mechanical role which is still under investigation. Given the results of this new geometrical analysis, more-accurate multiscale finite element models can now be developed, which will provide new insights into the mechanobiology of the IVD. In addition, the results of this study can potentially be used for the fabrication of bio-inspired tissue-engineered scaffolds and IVD models to truly capture the multi-scale structural hierarchy of IVDs. STATEMENT OF SIGNIFICANCE: Visualization of elastic fibers in the nucleus of the intervertebral disk under high magnification was not reported before. The present research utilized extracellular matrix partial digestion to address significant gaps in understanding of nucleus microstructure that can potentially be used for the fabrication of bio-inspired tissue-engineered scaffolds and disk models to truly capture the multi-scale structural hierarchy of discs

    Is Stand-Alone Anterior Lumbar Interbody Fusion a Safe and Efficacious Treatment for Isthmic Spondylolisthesis of L5-S1?

    Full text link
    STUDY DESIGN: A systematic review. OBJECTIVE: The objective of this study was to determine the safety and efficacy of stand-alone anterior lumbar interbody fusion (sa-ALIF) for the treatment of symptomatic isthmic spondylolisthesis of L5-S1 by assessing the level of available clinical and radiographic evidence. METHODS: A systematic review utilizing Medline, Embase, and Scopus online databases was undertaken. Clinical, radiographic, and adverse outcome data were extracted for the relevant isthmic spondylolisthesis cases with the intention of undertaking a meta-analysis. RESULTS: The database search between January 1980 and December 2015 yielded 23 articles that concerned sa-ALIF for isthmic spondylolisthesis of L5-S1. Only in 9 of the 23 articles data could be extracted specific to sa-ALIF for isthmic spondylolisthesis of L5-S1. There was considerable inconsistency in the standards for reporting outcomes of the surgery due to which meta-analysis could not be undertaken, and hence each article was reviewed. CONCLUSIONS: There was insufficient evidence to support the safety and efficacy of sa-ALIF for the treatment of isthmic spondylolisthesis of L5-S1. Although sa-ALIF is widely documented in the literature, there was insufficient evidence to support its use in treating this specific pathology. The unique pathological and anatomical situation that isthmic spondylolisthesis of L5-S1 presents must be recognized and its treatment with sa-ALIF should be well thought out

    Mild (not severe) disc degeneration is implicated in the progression of bilateral L5 spondylolysis to spondylolisthesis

    Full text link
    © 2018 The Author(s). Background: Spondylolytic (or lytic) spondylolisthesis is often associated with disc degeneration at the index-level; however, it is not clear if disc degeneration is the cause or the consequence of lytic spondylolisthesis. The main objective of this computed tomography based finite element modelling study was to examine the role of different grades of disc degeneration in the progression of a bilateral L5-lytic defect to spondylolisthesis. Methods: High-resolution computed tomography data of the lumbosacral spine from an anonymised healthy male subject (26 years old) were segmented to build a 3D-computational model of an INTACT L1-S1 spine. The INTACT model was manipulated to generate four more models representing a bilateral L5-lytic defect and the following states of the L5-S1 disc: nil degeneration (NOR LYTIC), mild degeneration (M-DEG LYTIC), mild degeneration with 50% disc height collapse (M-DEG-COL LYTIC), and severe degeneration with 50% disc height collapse(S-COL LYTIC). The models were imported into a finite element modelling software for pre-processing, running nonlinear-static solves, and post-processing of the results. Results: Compared with the baseline INTACT model, M-DEG LYTIC model experienced the greatest increase in kinematics (Fx range of motion: 73% ↑, Fx intervertebral translation: 53%↑), shear stresses in the annulus (Fx anteroposterior: 163%↑, Fx posteroanterior: 31%↑), and strain in the iliolumbar ligament (Fx: 90%↑). The S-COL LYTIC model experienced a decrease in mobility (Fx range of motion: 48%↓, Fx intervertebral translation: 69%↓) and an increase in normal stresses in the annulus (Fx Tensile: 170%↑; Fx Compressive: 397%↑). No significant difference in results was noted between M-DEG-COL LYTIC and S-COL LYTIC models. Conclusions: In the presence of a bilateral L5 spondylolytic defect, a mildly degenerate index-level disc experienced greater intervertebral motions and shear stresses compared with a severely degenerate index-level disc in flexion and extension bending motions. Disc height collapse, with or without degenerative changes in the stiffness properties of the disc, is one of the plausible re-stabilisation mechanisms available to the L5-S1 motion segment to mitigate increased intervertebral motions and shear stresses due to a bilateral L5 lytic defect

    The Role of Sacral Slope in the Progression of a Bilateral Spondylolytic Defect at L5 to Spondylolisthesis: A Biomechanical Investigation Using Finite Element Analysis

    Full text link
    © The Author(s) 2017. Study Design: A biomechanical study using finite element analysis. Objectives: The main objective of this study was to investigate the role of sacral slope in the progression of a L5 bilateral spondylolytic defect to spondylolisthesis. Methods: A 3-dimensional model of lumbosacral spine was built using computed tomography (CT) data procured from an anonymized healthy male subject. The segmented CT data was manipulated to generate 3 more models representing L5 bilateral spondylolytic defect with normal sacral slope (SS), sacral slope increased by 10° (SS+10), and sacral slope decreased by 10° (SS-10). The 3D models were imported into finite element modelling software Strand7 for preprocessing, running nonlinear static solves, and postprocessing of the results. Results: Directional biomechanical instabilities were induced in the lumbosacral spine as a result of changes in the L5-S1 disc shape secondary to the changes in sacral slope. Compared with the normal L5 lytic model, wedging of the L5-S1 disc (SS+10) resulted in a significantly greater range of motion in flexion (18% ↑) but extension motion characteristics were similar. Conversely, flattening of the L5-S1 disc (SS-10) resulted in a significantly greater range of motion in extension (16% ↑) but flexion motion characteristics were similar to that of the normal L5 lytic model. Conclusions: Variations in sacral slope while preserving the L5-S1 mid-disc height and orientation of the L5 vertebra resulted in variations in the L5-S1 disc shape. The results suggest that for such extremities in the L5-S1 disc shape different pathomechanisms exist for the progression of the L5 lytic defect to spondylolisthesis

    A novel magnetic resonance imaging postprocessing technique for the assessment of intervertebral disc degeneration-Correlation with histological grading in a rabbit disc degeneration model.

    Full text link
    Introduction: Estimation of intervertebral disc degeneration on magnetic resonance imaging (MRI) is challenging. Qualitative schemes used in clinical practice correlate poorly with pain and quantitative techniques have not entered widespread clinical use. Methods: As part of a prior study, 25 New Zealand white rabbits underwent annular puncture to induce disc degeneration in 50 noncontiguous lumbar discs. At 16 weeks, the animals underwent multi-echo T2 MRI scanning and were euthanized. The discs were stained and examined histologically. Quantitative T2 relaxation maps were prepared using the nonlinear least squares method. Decay Variance maps were created using a novel technique of aggregating the deviation in the intensity of each echo signal from the expected intensity based on the previous rate of decay. Results: Decay Variance maps showed a clear and well demarcated nucleus pulposus with a consistent rate of decay (low Decay Variance) in healthy discs that showed progressively more variable decay (higher Decay Variance) with increasing degeneration. Decay Variance maps required significantly less time to generate (1.0 ± 0.0 second) compared with traditional T2 relaxometry maps (5 (±0.9) to 1788.9 (±116) seconds). Histology scores correlated strongly with Decay Variance scores (r = 0.82, P < .01) and weakly with T2 signal intensity (r = 0.32, P < .01) and quantitative T2 relaxometry (r = 0.39, P < .01). Decay Variance had superior sensitivity and specificity for the detection of degenerate discs when compared to T2 signal intensity or Quantitative T2 mapping. Conclusion: Our results show that using a multi-echo T2 MRI sequence, Decay Variance can quantitatively assess disc degeneration more accurately and with less image-processing time than quantitative T2 relaxometry in a rabbit disc puncture model. The technique is a viable candidate for quantitative assessment of disc degeneration on MRI scans. Further validation on human subjects is needed

    Pathophysiological Correlation between Cigarette Smoking and Amyotrophic Lateral Sclerosis

    Full text link
    Cigarette smoke (CS) has been consistently demonstrated to be an environmental risk factor for amyotrophic lateral sclerosis (ALS), although the molecular pathogenic mechanisms involved are yet to be elucidated. Here, we propose different mechanisms by which CS exposure can cause sporadic ALS pathogenesis. Oxidative stress and neuroinflammation are widely implicated in ALS pathogenesis, with blood–spinal cord barrier disruption also recognised to be involved in the disease process. In addition, immunometabolic, epigenetic and microbiome alterations have been implicated in ALS recently. Identification of the underlying pathophysiological mechanisms that underpin CS-associated ALS will drive future research to be conducted into new targets for treatment

    Blood-Spinal Cord Barrier: Its Role in Spinal Disorders and Emerging Therapeutic Strategies

    Full text link
    The blood-spinal cord barrier (BSCB) has been long thought of as a functional equivalent to the blood-brain barrier (BBB), restricting blood flow into the spinal cord. The spinal cord is supported by various disc tissues that provide agility and has different local immune responses compared to the brain. Though physiologically, structural components of the BSCB and BBB share many similarities, the clinical landscape significantly differs. Thus, it is crucial to understand the composition of BSCB and also to establish the cause–effect relationship with aberrations and spinal cord dysfunctions. Here, we provide a descriptive analysis of the anatomy, current techniques to assess the impairment of BSCB, associated risk factors and impact of spinal disorders such as spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS), peripheral nerve injury (PNI), ischemia reperfusion injury (IRI), degenerative cervical myelopathy (DCM), multiple sclerosis (MS), spinal cavernous malformations (SCM) and cancer on BSCB dysfunction. Along with diagnostic and mechanistic analyses, we also provide an up-to-date account of available therapeutic options for BSCB repair. We emphasize the need to address BSCB as an individual entity and direct future research towards it.</jats:p

    Regenerative Response of Degenerate Human Nucleus Pulposus Cells to GDF6 Stimulation

    Get PDF
    Growth differentiation factor (GDF) family members have been implicated in the development and maintenance of healthy nucleus pulposus (NP) tissue, making them promising therapeutic candidates for treatment of intervertebral disc (IVD) degeneration and associated back pain. GDF6 has been shown to promote discogenic differentiation of mesenchymal stem cells, but its effect on NP cells remains largely unknown. Our aim was to investigate GDF6 signalling in adult human NP cells derived from degenerate tissue and determine the signal transduction pathways critical for GDF6-mediated phenotypic changes and tissue homeostatic mechanisms. This study demonstrates maintained expression of GDF6 receptors in human NP and annulus fibrosus (AF) cells across a range of degeneration grades at gene and protein level. We observed an anabolic response in NP cells treated with recombinant GDF6 (increased expression of matrix and NP-phenotypic markers; increased glycosaminoglycan production; no change in catabolic enzyme expression), and identified the signalling pathways involved in these responses (SMAD1/5/8 and ERK1/2 phosphorylation, validated by blocking studies). These findings suggest that GDF6 promotes a healthy disc tissue phenotype in degenerate NP cells through SMAD-dependent and -independent (ERK1/2) mechanisms, which is important for development of GDF6 therapeutic strategies for treatment of degenerate discs.</jats:p

    First observations of separated atmospheric nu_mu and bar{nu-mu} events in the MINOS detector

    Get PDF
    The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of nu” and [overline nu ]” charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward- to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations, giving Rup/downdata/Rup/downMC=0.62-0.14+0.19(stat.)±0.02(sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98% confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field nu” and [overline nu ]” interactions are separated. The ratio of [overline nu ]” to nu” events in the data is compared to the Monte Carlo expectation assuming neutrinos and antineutrinos oscillate in the same manner, giving R[overline nu ][sub mu]/nu[sub mu]data/R[overline nu ][sub mu]/nu[sub mu]MC=0.96-0.27+0.38(stat.)±0.15(sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for nu” and [overline nu ]”
    • 

    corecore