8 research outputs found

    Lifetime Studies of Cs2Te Cathodes at the Phin RF Photoinjector at CERN

    Full text link
    The PHIN photoinjector has been developed to study the feasibility of a photoinjector option for the CLIC (Compact LInear Collider) drive beam as an alternative to the baseline design, using a thermionic gun. The CLIC drive beam requires a high charge of 8.4 nC per bunch in 0.14 ms long trains, with 2 ns bunch spacing and 50 Hz macro pulse repetition rate, which corresponds to a total charge per macro pulse of 0.59 mC. This means unusually high peak and average currents for photoinjectors and is challenging concerning the cathode lifetime. In this paper detailed studies of the lifetime of Cs2Te cathodes, produced by the co-evaporation technique, are presented with respect to bunch charge, train length and vacuum level. Furthermore, the impact of the train length and bunch charge on the vacuum level will be discussed and steps to extend the lifetime will be outlined

    Impact of laser stacking and photocathode materials on microbunching stability in photoinjectors

    Full text link
    Microbunching instability is a well-known phenomenon that may deteriorate the performance of accelerators. The instability may be triggered by a shot-noise mechanism or by some initial intensity modulations at the generation of the electron bunch (or both) and can be amplified all along the machine. At SwissFEL, the free-electron laser (FEL) facility operating at the Paul Scherrer Institute (PSI), the initial design stipulated a shaping of the photocathode laser output to obtain a flat-top longitudinal profile. This scheme is attractive in terms of the uniformity of the beam properties along the bunch. The drawback of this approach is that some unavoidable modulations are generated along the laser pulse. We investigate, both experimentally and by numerical simulations, the longitudinal dynamics of a beam obtained illuminating a copper cathode with a laser profile shaped by the stacking technique. We repeat the analysis for several compression factors and initial laser profile modulations. We find that the microbunching instability gain renders the use of the stacking technique not efficient to run a free-electron laser facility using as photocathode a material with a short response time. We experimentally demonstrate that the use of a material with a longer response time efficiently damps the structures originating from the laser profile obtained with stacking, and helps to improve the performance of the facility. In general, this is an approach to minimize the microbunching instability at any FEL (also not using stacking) or at least reduce the use of other countermeasures, which, such as the laser heater, may degrade the final FEL performance

    High Charge PHIN Photo Injector at CERN with Fast Phase switching within the Bunch Train for Beam Combination

    Full text link
    The high charge PHIN photo-injector was developed within the framework of the European CARE program to provide an alternative to the drive beam thermionic gun in the CTF3 (CLIC Test Facility) at CERN. In PHIN 1908 electron bunches are delivered with bunch spacing of 1.5 GHz and 2.33 nC charge per bunch. Furthermore the drive beam generated by CTF3 requires several fast 180 deg phase-shifts with respect to the 1.5 GHz bunch repetition frequency in order to allow the beam combination scheme developed at CTF3. A total of 8 subtrains, each 140 ns long and shifted in phase with respect to each other, have to be produced with very high phase and amplitude stability. A novel fiber modulator based phase-switching technique developed on the laser system provides this phase-shift between two consecutive pulses much faster and cleaner than the base line scheme, where a thermionic electron gun and sub-harmonic bunching are used. The paper describes the fiber-based switching system and the measurements verifying the scheme. The paper also discusses the latest 8nC charge production and cathode life-time studies on Cs2Te

    The CLIC Feasibility Demonstration in CTF3

    Full text link
    The objective of the CLIC Test Facility CTF3 is to demonstrate the feasibility issues of the CLIC two-beam technology: the efficient generation of a very high current drive beam, used as the power source to accelerate the main beam to multi-TeV energies with gradients of over 100 MeV/m, and stable drive beam deceleration. Results of successful beam acceleration with over 100 MeV/m energy gain are shown. Measurements of drive beam deceleration over a chain of Power Extraction Structures (PETS) are presented. The achieved RF power levels, the stability of the power production and of the deceleration are discussed. Finally, we give an overview of the remaining issues to be addressed by the end of 2011

    Thematik und Methodik des MAB-Forschungsplans von 1986 und die Beteiligung von Natur- und Gesellschaftswissenschaften Vorlage fuer das Deutsche Nationalkomitee des UNESCO-Programms 'Der Mensch und die Biosphaere'

    Get PDF
    UuStB Koeln(38)-890106346 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    SwissFEL: The Swiss X-ray Free Electron Laser

    Full text link
    The SwissFEL X-ray Free Electron Laser (XFEL) facility started construction at the Paul Scherrer Institute (Villigen, Switzerland) in 2013 and will be ready to accept its first users in 2018 on the Aramis hard X-ray branch. In the following sections we will summarize the various aspects of the project, including the design of the soft and hard X-ray branches of the accelerator, the results of SwissFEL performance simulations, details of the photon beamlines and experimental stations, and our first commissioning results

    Updated baseline for a staged Compact Linear Collider

    Get PDF
    The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e+e- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top-quark measurements. Subsequent stages will focus on measurements of rare Higgs processes, as well as searches for new physics processes and precision measurements of new states, e.g. states previously discovered at LHC or at CLIC itself. In the 2012 CLIC Conceptual Design Report, a fully optimised 3 TeV collider was presented, while the proposed lower energy stages were not studied to the same level of detail. This report presents an updated baseline staging scenario for CLIC. The scenario is the result of a comprehensive study addressing the performance, cost and power of the CLIC accelerator complex as a function of centre-of-mass energy and it targets optimal physics output based on the current physics landscape. The optimised staging scenario foresees three main centre-of-mass energy stages at 380 GeV, 1.5 TeV and 3 TeV for a full CLIC programme spanning 22 years. For the first stage, an alternative to the CLIC drive beam scheme is presented in which the main linac power is produced using X-band klystrons
    corecore