5 research outputs found
Facility Location in Evolving Metrics
Understanding the dynamics of evolving social or infrastructure networks is a
challenge in applied areas such as epidemiology, viral marketing, or urban
planning. During the past decade, data has been collected on such networks but
has yet to be fully analyzed. We propose to use information on the dynamics of
the data to find stable partitions of the network into groups. For that
purpose, we introduce a time-dependent, dynamic version of the facility
location problem, that includes a switching cost when a client's assignment
changes from one facility to another. This might provide a better
representation of an evolving network, emphasizing the abrupt change of
relationships between subjects rather than the continuous evolution of the
underlying network. We show that in realistic examples this model yields indeed
better fitting solutions than optimizing every snapshot independently. We
present an -approximation algorithm and a matching hardness result,
where is the number of clients and the number of time steps. We also
give an other algorithms with approximation ratio for the variant
where one pays at each time step (leasing) for each open facility
Online unit clustering in higher dimensions
We revisit the online Unit Clustering and Unit Covering problems in higher
dimensions: Given a set of points in a metric space, that arrive one by
one, Unit Clustering asks to partition the points into the minimum number of
clusters (subsets) of diameter at most one; while Unit Covering asks to cover
all points by the minimum number of balls of unit radius. In this paper, we
work in using the norm.
We show that the competitive ratio of any online algorithm (deterministic or
randomized) for Unit Clustering must depend on the dimension . We also give
a randomized online algorithm with competitive ratio for Unit
Clustering}of integer points (i.e., points in , , under norm). We show that the competitive ratio of
any deterministic online algorithm for Unit Covering is at least . This
ratio is the best possible, as it can be attained by a simple deterministic
algorithm that assigns points to a predefined set of unit cubes. We complement
these results with some additional lower bounds for related problems in higher
dimensions.Comment: 15 pages, 4 figures. A preliminary version appeared in the
Proceedings of the 15th Workshop on Approximation and Online Algorithms (WAOA
2017
Quasispecies Spatial Models for RNA Viruses with Different Replication Modes and Infection Strategies
Empirical observations and theoretical studies suggest that viruses may use different replication strategies to amplify their genomes, which impact the dynamics of mutation accumulation in viral populations and therefore, their fitness and virulence. Similarly, during natural infections, viruses replicate and infect cells that are rarely in suspension but spatially organized. Surprisingly, most quasispecies models of virus replication have ignored these two phenomena. In order to study these two viral characteristics, we have developed stochastic cellular automata models that simulate two different modes of replication (geometric vs stamping machine) for quasispecies replicating and spreading on a two-dimensional space. Furthermore, we explored these two replication models considering epistatic fitness landscapes (antagonistic vs synergistic) and different scenarios for cell-to-cell spread, one with free superinfection and another with superinfection inhibition. We found that the master sequences for populations replicating geometrically and with antagonistic fitness effects vanished at low critical mutation rates. By contrast, the highest critical mutation rate was observed for populations replicating geometrically but with a synergistic fitness landscape. Our simulations also showed that for stamping machine replication and antagonistic epistasis, a combination that appears to be common among plant viruses, populations further increased their robustness by inhibiting superinfection. We have also shown that the mode of replication strongly influenced the linkage between viral loci, which rapidly reached linkage equilibrium at increasing mutations for geometric replication. We also found that the strategy that minimized the time required to spread over the whole space was the stamping machine with antagonistic epistasis among mutations. Finally, our simulations revealed that the multiplicity of infection fluctuated but generically increased along time