3,804 research outputs found

    Anomalous enhancement of spin Hall conductivity in superconductor/normal metal junction

    Full text link
    We propose a spin Hall device to induce a large spin Hall effect in a superconductor/normal metal (SN) junction. The side jump and skew scattering mechanisms are both taken into account to calculate the extrinsic spin Hall conductivity in the normal metal. We find that both contributions are anomalously enhanced when the voltage between the superconductor and the normal metal approaches to the superconducting gap. This enhancement is attributed to the resonant increase of the density of states in the normal metal at the Fermi level. Our results demonstrate a novel way to control and amplify the spin Hall conductivity by applying an external dc electric field, suggesting that a SN junction has a potential application for a spintronic device with a large spin Hall effect.Comment: 5 pages, 4 figures, To be published as a Rapid Communication in Physical Review

    A perturbative approach to Dirac observables and their space-time algebra

    Full text link
    We introduce a general approximation scheme in order to calculate gauge invariant observables in the canonical formulation of general relativity. Using this scheme we will show how the observables and the dynamics of field theories on a fixed background or equivalently the observables of the linearized theory can be understood as an approximation to the observables in full general relativity. Gauge invariant corrections can be calculated up to an arbitrary high order and we will explicitly calculate the first non--trivial correction. Furthermore we will make a first investigation into the Poisson algebra between observables corresponding to fields at different space--time points and consider the locality properties of the observables.Comment: 23 page

    The German turnover tax statistics panel

    Full text link

    From the discrete to the continuous - towards a cylindrically consistent dynamics

    Full text link
    Discrete models usually represent approximations to continuum physics. Cylindrical consistency provides a framework in which discretizations mirror exactly the continuum limit. Being a standard tool for the kinematics of loop quantum gravity we propose a coarse graining procedure that aims at constructing a cylindrically consistent dynamics in the form of transition amplitudes and Hamilton's principal functions. The coarse graining procedure, which is motivated by tensor network renormalization methods, provides a systematic approximation scheme towards this end. A crucial role in this coarse graining scheme is played by embedding maps that allow the interpretation of discrete boundary data as continuum configurations. These embedding maps should be selected according to the dynamics of the system, as a choice of embedding maps will determine a truncation of the renormalization flow.Comment: 22 page

    Lamm, Valluri, Jentschura and Weniger comment on "A Convergent Series for the QED Effective Action" by Cho and Pak [Phys. Rev. Lett. vol. 86, pp. 1947-1950 (2001)]

    Get PDF
    Complete results were obtained by us in [Can. J. Phys. 71, 389 (1993)] for convergent series representations of both the real and the imaginary part of the QED effective action; these derivations were based on correct intermediate steps. In this comment, we argue that the physical significance of the "logarithmic correction term" found by Cho and Pak in [Phys. Rev. Lett. 86, 1947 (2001)] in comparison to the usual expression for the QED effective action remains to be demonstrated. Further information on related subjects can be found in Appendix A of hep-ph/0308223 and in hep-th/0210240.Comment: 1 page, RevTeX; only "meta-data" update

    From covariant to canonical formulations of discrete gravity

    Full text link
    Starting from an action for discretized gravity we derive a canonical formalism that exactly reproduces the dynamics and (broken) symmetries of the covariant formalism. For linearized Regge calculus on a flat background -- which exhibits exact gauge symmetries -- we derive local and first class constraints for arbitrary triangulated Cauchy surfaces. These constraints have a clear geometric interpretation and are a first step towards obtaining anomaly--free constraint algebras for canonical lattice gravity. Taking higher order dynamics into account the symmetries of the action are broken. This results in consistency conditions on the background gauge parameters arising from the lowest non--linear equations of motion. In the canonical framework the constraints to quadratic order turn out to depend on the background gauge parameters and are therefore pseudo constraints. These considerations are important for connecting path integral and canonical quantizations of gravity, in particular if one attempts a perturbative expansion.Comment: 37 pages, 5 figures (minor modifications, matches published version + updated references

    Manifestly Gauge-Invariant General Relativistic Perturbation Theory: II. FRW Background and First Order

    Full text link
    In our companion paper we identified a complete set of manifestly gauge-invariant observables for general relativity. This was possible by coupling the system of gravity and matter to pressureless dust which plays the role of a dynamically coupled observer. The evolution of those observables is governed by a physical Hamiltonian and we derived the corresponding equations of motion. Linear perturbation theory of those equations of motion around a general exact solution in terms of manifestly gauge invariant perturbations was then developed. In this paper we specialise our previous results to an FRW background which is also a solution of our modified equations of motion. We then compare the resulting equations with those derived in standard cosmological perturbation theory (SCPT). We exhibit the precise relation between our manifestly gauge-invariant perturbations and the linearly gauge-invariant variables in SCPT. We find that our equations of motion can be cast into SCPT form plus corrections. These corrections are the trace that the dust leaves on the system in terms of a conserved energy momentum current density. It turns out that these corrections decay, in fact, in the late universe they are negligible whatever the value of the conserved current. We conclude that the addition of dust which serves as a test observer medium, while implying modifications of Einstein's equations without dust, leads to acceptable agreement with known results, while having the advantage that one now talks about manifestly gauge-invariant, that is measurable, quantities, which can be used even in perturbation theory at higher orders.Comment: 51 pages, no figure
    corecore