3,804 research outputs found
Anomalous enhancement of spin Hall conductivity in superconductor/normal metal junction
We propose a spin Hall device to induce a large spin Hall effect in a
superconductor/normal metal (SN) junction. The side jump and skew scattering
mechanisms are both taken into account to calculate the extrinsic spin Hall
conductivity in the normal metal. We find that both contributions are
anomalously enhanced when the voltage between the superconductor and the normal
metal approaches to the superconducting gap. This enhancement is attributed to
the resonant increase of the density of states in the normal metal at the Fermi
level. Our results demonstrate a novel way to control and amplify the spin Hall
conductivity by applying an external dc electric field, suggesting that a SN
junction has a potential application for a spintronic device with a large spin
Hall effect.Comment: 5 pages, 4 figures, To be published as a Rapid Communication in
Physical Review
A perturbative approach to Dirac observables and their space-time algebra
We introduce a general approximation scheme in order to calculate gauge
invariant observables in the canonical formulation of general relativity. Using
this scheme we will show how the observables and the dynamics of field theories
on a fixed background or equivalently the observables of the linearized theory
can be understood as an approximation to the observables in full general
relativity. Gauge invariant corrections can be calculated up to an arbitrary
high order and we will explicitly calculate the first non--trivial correction.
Furthermore we will make a first investigation into the Poisson algebra between
observables corresponding to fields at different space--time points and
consider the locality properties of the observables.Comment: 23 page
From the discrete to the continuous - towards a cylindrically consistent dynamics
Discrete models usually represent approximations to continuum physics.
Cylindrical consistency provides a framework in which discretizations mirror
exactly the continuum limit. Being a standard tool for the kinematics of loop
quantum gravity we propose a coarse graining procedure that aims at
constructing a cylindrically consistent dynamics in the form of transition
amplitudes and Hamilton's principal functions. The coarse graining procedure,
which is motivated by tensor network renormalization methods, provides a
systematic approximation scheme towards this end. A crucial role in this coarse
graining scheme is played by embedding maps that allow the interpretation of
discrete boundary data as continuum configurations. These embedding maps should
be selected according to the dynamics of the system, as a choice of embedding
maps will determine a truncation of the renormalization flow.Comment: 22 page
Lamm, Valluri, Jentschura and Weniger comment on "A Convergent Series for the QED Effective Action" by Cho and Pak [Phys. Rev. Lett. vol. 86, pp. 1947-1950 (2001)]
Complete results were obtained by us in [Can. J. Phys. 71, 389 (1993)] for
convergent series representations of both the real and the imaginary part of
the QED effective action; these derivations were based on correct intermediate
steps. In this comment, we argue that the physical significance of the
"logarithmic correction term" found by Cho and Pak in [Phys. Rev. Lett. 86,
1947 (2001)] in comparison to the usual expression for the QED effective action
remains to be demonstrated. Further information on related subjects can be
found in Appendix A of hep-ph/0308223 and in hep-th/0210240.Comment: 1 page, RevTeX; only "meta-data" update
From covariant to canonical formulations of discrete gravity
Starting from an action for discretized gravity we derive a canonical
formalism that exactly reproduces the dynamics and (broken) symmetries of the
covariant formalism. For linearized Regge calculus on a flat background --
which exhibits exact gauge symmetries -- we derive local and first class
constraints for arbitrary triangulated Cauchy surfaces. These constraints have
a clear geometric interpretation and are a first step towards obtaining
anomaly--free constraint algebras for canonical lattice gravity. Taking higher
order dynamics into account the symmetries of the action are broken. This
results in consistency conditions on the background gauge parameters arising
from the lowest non--linear equations of motion. In the canonical framework the
constraints to quadratic order turn out to depend on the background gauge
parameters and are therefore pseudo constraints. These considerations are
important for connecting path integral and canonical quantizations of gravity,
in particular if one attempts a perturbative expansion.Comment: 37 pages, 5 figures (minor modifications, matches published version +
updated references
Manifestly Gauge-Invariant General Relativistic Perturbation Theory: II. FRW Background and First Order
In our companion paper we identified a complete set of manifestly
gauge-invariant observables for general relativity. This was possible by
coupling the system of gravity and matter to pressureless dust which plays the
role of a dynamically coupled observer. The evolution of those observables is
governed by a physical Hamiltonian and we derived the corresponding equations
of motion. Linear perturbation theory of those equations of motion around a
general exact solution in terms of manifestly gauge invariant perturbations was
then developed. In this paper we specialise our previous results to an FRW
background which is also a solution of our modified equations of motion. We
then compare the resulting equations with those derived in standard
cosmological perturbation theory (SCPT). We exhibit the precise relation
between our manifestly gauge-invariant perturbations and the linearly
gauge-invariant variables in SCPT. We find that our equations of motion can be
cast into SCPT form plus corrections. These corrections are the trace that the
dust leaves on the system in terms of a conserved energy momentum current
density. It turns out that these corrections decay, in fact, in the late
universe they are negligible whatever the value of the conserved current. We
conclude that the addition of dust which serves as a test observer medium,
while implying modifications of Einstein's equations without dust, leads to
acceptable agreement with known results, while having the advantage that one
now talks about manifestly gauge-invariant, that is measurable, quantities,
which can be used even in perturbation theory at higher orders.Comment: 51 pages, no figure
- …