3,072 research outputs found
Curved planar quantum wires with Dirichlet and Neumann boundary conditions
We investigate the discrete spectrum of the Hamiltonian describing a quantum
particle living in the two-dimensional curved strip. We impose the Dirichlet
and Neumann boundary conditions on opposite sides of the strip. The existence
of the discrete eigenvalue below the essential spectrum threshold depends on
the sign of the total bending angle for the asymptotically straight strips.Comment: 7 page
(Broken) Gauge Symmetries and Constraints in Regge Calculus
We will examine the issue of diffeomorphism symmetry in simplicial models of
(quantum) gravity, in particular for Regge calculus. We find that for a
solution with curvature there do not exist exact gauge symmetries on the
discrete level. Furthermore we derive a canonical formulation that exactly
matches the dynamics and hence symmetries of the covariant picture. In this
canonical formulation broken symmetries lead to the replacements of constraints
by so--called pseudo constraints. These considerations should be taken into
account in attempts to connect spin foam models, based on the Regge action,
with canonical loop quantum gravity, which aims at implementing proper
constraints. We will argue that the long standing problem of finding a
consistent constraint algebra for discretized gravity theories is equivalent to
the problem of finding an action with exact diffeomorphism symmetries. Finally
we will analyze different limits in which the pseudo constraints might turn
into proper constraints. This could be helpful to infer alternative
discretization schemes in which the symmetries are not broken.Comment: 32 pages, 15 figure
From the discrete to the continuous - towards a cylindrically consistent dynamics
Discrete models usually represent approximations to continuum physics.
Cylindrical consistency provides a framework in which discretizations mirror
exactly the continuum limit. Being a standard tool for the kinematics of loop
quantum gravity we propose a coarse graining procedure that aims at
constructing a cylindrically consistent dynamics in the form of transition
amplitudes and Hamilton's principal functions. The coarse graining procedure,
which is motivated by tensor network renormalization methods, provides a
systematic approximation scheme towards this end. A crucial role in this coarse
graining scheme is played by embedding maps that allow the interpretation of
discrete boundary data as continuum configurations. These embedding maps should
be selected according to the dynamics of the system, as a choice of embedding
maps will determine a truncation of the renormalization flow.Comment: 22 page
Gauge invariant perturbations around symmetry reduced sectors of general relativity: applications to cosmology
We develop a gauge invariant canonical perturbation scheme for perturbations
around symmetry reduced sectors in generally covariant theories, such as
general relativity. The central objects of investigation are gauge invariant
observables which encode the dynamics of the system. We apply this scheme to
perturbations around a homogeneous and isotropic sector (cosmology) of general
relativity. The background variables of this homogeneous and isotropic sector
are treated fully dynamically which allows us to approximate the observables to
arbitrary high order in a self--consistent and fully gauge invariant manner.
Methods to compute these observables are given. The question of backreaction
effects of inhomogeneities onto a homogeneous and isotropic background can be
addressed in this framework. We illustrate the latter by considering
homogeneous but anisotropic Bianchi--I cosmologies as perturbations around a
homogeneous and isotropic sector.Comment: 39 pages, 1 figur
Manifestly Gauge-Invariant General Relativistic Perturbation Theory: II. FRW Background and First Order
In our companion paper we identified a complete set of manifestly
gauge-invariant observables for general relativity. This was possible by
coupling the system of gravity and matter to pressureless dust which plays the
role of a dynamically coupled observer. The evolution of those observables is
governed by a physical Hamiltonian and we derived the corresponding equations
of motion. Linear perturbation theory of those equations of motion around a
general exact solution in terms of manifestly gauge invariant perturbations was
then developed. In this paper we specialise our previous results to an FRW
background which is also a solution of our modified equations of motion. We
then compare the resulting equations with those derived in standard
cosmological perturbation theory (SCPT). We exhibit the precise relation
between our manifestly gauge-invariant perturbations and the linearly
gauge-invariant variables in SCPT. We find that our equations of motion can be
cast into SCPT form plus corrections. These corrections are the trace that the
dust leaves on the system in terms of a conserved energy momentum current
density. It turns out that these corrections decay, in fact, in the late
universe they are negligible whatever the value of the conserved current. We
conclude that the addition of dust which serves as a test observer medium,
while implying modifications of Einstein's equations without dust, leads to
acceptable agreement with known results, while having the advantage that one
now talks about manifestly gauge-invariant, that is measurable, quantities,
which can be used even in perturbation theory at higher orders.Comment: 51 pages, no figure
Uni-directional transport properties of a serpent billiard
We present a dynamical analysis of a classical billiard chain -- a channel
with parallel semi-circular walls, which can serve as a model for a bended
optical fiber. An interesting feature of this model is the fact that the phase
space separates into two disjoint invariant components corresponding to the
left and right uni-directional motions. Dynamics is decomposed into the jump
map -- a Poincare map between the two ends of a basic cell, and the time
function -- traveling time across a basic cell of a point on a surface of
section. The jump map has a mixed phase space where the relative sizes of the
regular and chaotic components depend on the width of the channel. For a
suitable value of this parameter we can have almost fully chaotic phase space.
We have studied numerically the Lyapunov exponents, time auto-correlation
functions and diffusion of particles along the chain. As a result of a
singularity of the time function we obtain marginally-normal diffusion after we
subtract the average drift. The last result is also supported by some
analytical arguments.Comment: 15 pages, 9 figure (19 .(e)ps files
Quantum versus Classical Dynamics in a driven barrier: the role of kinematic effects
We study the dynamics of the classical and quantum mechanical scattering of a
wave packet from an oscillating barrier. Our main focus is on the dependence of
the transmission coefficient on the initial energy of the wave packet for a
wide range of oscillation frequencies. The behavior of the quantum transmission
coefficient is affected by tunneling phenomena, resonances and kinematic
effects emanating from the time dependence of the potential. We show that when
kinematic effects dominate (mainly in intermediate frequencies), classical
mechanics provides very good approximation of quantum results. Moreover, in the
frequency region of optimal agreement between classical and quantum
transmission coefficient, the transmission threshold, i.e. the energy above
which the transmission coefficient becomes larger than a specific small
threshold value, is found to exhibit a minimum. We also consider the form of
the transmitted wave packet and we find that for low values of the frequency
the incoming classical and quantum wave packet can be split into a train of
well separated coherent pulses, a phenomenon which can admit purely classical
kinematic interpretation
Classical GR as a topological theory with linear constraints
We investigate a formulation of continuum 4d gravity in terms of a
constrained topological (BF) theory, in the spirit of the Plebanski
formulation, but involving only linear constraints, of the type used recently
in the spin foam approach to quantum gravity. We identify both the continuum
version of the linear simplicity constraints used in the quantum discrete
context and a linear version of the quadratic volume constraints that are
necessary to complete the reduction from the topological theory to gravity. We
illustrate and discuss also the discrete counterpart of the same continuum
linear constraints. Moreover, we show under which additional conditions the
discrete volume constraints follow from the simplicity constraints, thus
playing the role of secondary constraints. Our analysis clarifies how the
discrete constructions of spin foam models are related to a continuum theory
with an action principle that is equivalent to general relativity.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010
(ERE2010, Granada, Spain
Classical GR as a topological theory with linear constraints
We investigate a formulation of continuum 4d gravity in terms of a
constrained topological (BF) theory, in the spirit of the Plebanski
formulation, but involving only linear constraints, of the type used recently
in the spin foam approach to quantum gravity. We identify both the continuum
version of the linear simplicity constraints used in the quantum discrete
context and a linear version of the quadratic volume constraints that are
necessary to complete the reduction from the topological theory to gravity. We
illustrate and discuss also the discrete counterpart of the same continuum
linear constraints. Moreover, we show under which additional conditions the
discrete volume constraints follow from the simplicity constraints, thus
playing the role of secondary constraints. Our analysis clarifies how the
discrete constructions of spin foam models are related to a continuum theory
with an action principle that is equivalent to general relativity.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010
(ERE2010, Granada, Spain
- …