238 research outputs found
Noise sustained propagation: Local versus global noise
We expand on prior results on noise supported signal propagation in arrays of
coupled bistable elements. We present and compare experimental and numerical
results for kink propagation under the influence of local and global
fluctuations. As demonstrated previously for local noise, an optimum range of
global noise power exists for which the medium acts as a reliable transmission
``channel''. We discuss implications for propagation failure in a model of
cardiac tissue and present a general theoretical framework based on discrete
kink statistics. Valid for generic bistable chains, the theory captures the
essential features ob served in our experiments and numerical simulations.Comment: 1 latex file 20 pages, 9 figures. Accepted for publication in
Physical Review
On the Mechanism of Time--Delayed Feedback Control
The Pyragas method for controlling chaos is investigated in detail from the
experimental as well as theoretical point of view. We show by an analytical
stability analysis that the revolution around an unstable periodic orbit
governs the success of the control scheme. Our predictions concerning the
transient behaviour of the control signal are confirmed by numerical
simulations and an electronic circuit experiment.Comment: 4 pages, REVTeX, 4 eps-figures included Phys. Rev. Lett., in press
also available at
http://athene.fkp.physik.th-darmstadt.de/public/wolfram.htm
Quasiperiodic time dependent current in driven superlattices: distorted Poincare maps and strange attractors
Intriguing routes to chaos have been experimentally observed in semiconductor
superlattices driven by an ac field. In this work, a theoretical model of time
dependent transport in ac driven superlattices is numerically solved. In
agreement with experiments, distorted Poincare maps in the quasiperiodic regime
are found. They indicate the appearance of very complex attractors and routes
to chaos as the amplitude of the AC signal increases. Distorted maps are caused
by the discrete well-to-well jump motion of a domain wall during spiky
high-frequency self-sustained oscillations of the current.Comment: 10 pages, 4 figure
Intermittency transitions to strange nonchaotic attractors in a quasiperiodically driven Duffing oscillator
Different mechanisms for the creation of strange nonchaotic attractors (SNAs)
are studied in a two-frequency parametrically driven Duffing oscillator. We
focus on intermittency transitions in particular, and show that SNAs in this
system are created through quasiperiodic saddle-node bifurcations (Type-I
intermittency) as well as through a quasiperiodic subharmonic bifurcation
(Type-III intermittency). The intermittent attractors are characterized via a
number of Lyapunov measures including the behavior of the largest nontrivial
Lyapunov exponent and its variance as well as through distributions of
finite-time Lyapunov exponents. These attractors are ubiquitous in
quasiperiodically driven systems; the regions of occurrence of various SNAs are
identified in a phase diagram of the Duffing system.Comment: 24 pages, RevTeX 4, 12 EPS figure
Resonance phenomena of a solitonlike extended object in a bistable potential
We investigate the dynamics of a soliton that behaves as an extended
particle. The soliton motion in an effective bistable potential can be chaotic
in a similar way as the Duffing oscillator. We generalize the concept of
geometrical resonance to spatiotemporal systems and apply it to design a
nonfeedback mechanism of chaos control using localized perturbations.We show
the existence of solitonic stochastic resonance.Comment: 3 postscript figure
Experimental control of single-mode laser chaos by using continuous, time-delayed feedback
Control of chaos in the single-mode optically pumped far-infrared (NH3)-N-15 laser is experimentally demonstrated using continuous time-delay control. Both the Lorenz spiral chaos and the detuned period-doubling chaos exhibited by the laser have been controlled. While the laser is in the Lorenz spiral chaos regime the chaos has been controlled both such that the laser output is cw, with corrections of only a fraction of a percent necessary to keep it there, and to period one. The laser has also been controlled while in the period-doubling chaos regime, to both the period-one and -two states
Restricted feedback control of one-dimensional maps
Dynamical control of biological systems is often restricted by the practical
constraint of unidirectional parameter perturbations. We show that such a
restriction introduces surprising complexity to the stability of
one-dimensional map systems and can actually improve controllability. We
present experimental cardiac control results that support these analyses.
Finally, we develop new control algorithms that exploit the structure of the
restricted-control stability zones to automatically adapt the control feedback
parameter and thereby achieve improved robustness to noise and drifting system
parameters.Comment: 29 pages, 9 embedded figure
A genetic analysis of ambulatory cardiorespiratory coupling.
This study assessed the heritability of ambulatory heart period, respiratory sinus arrhythmia (RSA), and respiration rate and tested the hypothesis that the well-established correlation between these variables is determined by common genetic factors. In 780 healthy twins and siblings, 24-h ambulatory recordings of ECG and thorax impedance were made. Genetic analyses showed considerable heritability for heart period (37%-48%), RSA (40%-55%), and respiration rate (27%-81%) at all daily periods. Significant genetic correlations were found throughout. Common genes explained large portions of the covariance between heart period and RSA and between respiration rate and RSA. During the afternoon and night, the covariance between respiration rate and RSA was completely determined by common genes. This overlap in genes can be exploited to increase the power of linkage studies to detect genetic variation influencing cardiovascular disease risk. Copyright © 2005 Society for Psychophysiological Research
Point process time–frequency analysis of dynamic respiratory patterns during meditation practice
Respiratory sinus arrhythmia (RSA) is largely mediated by the autonomic nervous system through its modulating influence on the heart beats. We propose a robust algorithm for quantifying instantaneous RSA as applied to heart beat intervals and respiratory recordings under dynamic breathing patterns. The blood volume pressure-derived heart beat series (pulse intervals, PIs) are modeled as an inverse Gaussian point process, with the instantaneous mean PI modeled as a bivariate regression incorporating both past PIs and respiration values observed at the beats. A point process maximum likelihood algorithm is used to estimate the model parameters, and instantaneous RSA is estimated via a frequency domain transfer function evaluated at instantaneous respiratory frequency where high coherence between respiration and PIs is observed. The model is statistically validated using Kolmogorov–Smirnov goodness-of-fit analysis, as well as independence tests. The algorithm is applied to subjects engaged in meditative practice, with distinctive dynamics in the respiration patterns elicited as a result. The presented analysis confirms the ability of the algorithm to track important changes in cardiorespiratory interactions elicited during meditation, otherwise not evidenced in control resting states, reporting statistically significant increase in RSA gain as measured by our paradigm.National Institutes of Health (U.S.) (Grant R01-HL084502)National Institutes of Health (U.S.) (Grant R01-DA015644)National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant K01-AT00694-01
- …