5,324 research outputs found

    Long‐Range N 14

    Full text link

    Disruption of LANA in Rhesus Rhadinovirus Generates a Highly Lytic Recombinant Virus

    Get PDF
    Rhesus monkey rhadinovirus (RRV) is a gammaherpesvirus that is closely related to human Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8). RRV is the closest relative to KSHV that has a fully sequenced genome and serves as an in vitro and an in vivo model system for KSHV. The latency-associated nuclear antigen (LANA) protein of both KSHV and RRV plays key roles in the establishment and maintenance of these herpesviruses. We have constructed a RRV recombinant virus (RRVΔLANA/GFP) in which the RRV LANA open reading frame has been disrupted with a green fluorescent protein (GFP) expression cassette generated by homologous recombination. The integrity of the recombinant virus was confirmed by diagnostic PCR, restriction digestion, Southern blot analysis, and whole-genome sequencing. We compared the single-step and multistep replication kinetics of RRVΔLANA/GFP, RRV-GFP, wild-type (WT) RRV H26-95, and a revertant virus using traditional plaque assays, as well as real-time quantitative PCR-based genome quantification assays. The RRVΔLANA/GFP recombinant virus exhibited significantly higher lytic replicative properties compared to RRV-GFP, WT RRV, or the revertant virus. This was observed upon de novo infection and in the absence of chemical inducers such as phorbol esters. In addition, by using a quantitative real-time PCR-based viral array, we are the first to report differences in global viral gene expression between WT and recombinant viruses. The RRVΔLANA/GFP virus displayed increased lytic gene transcription at all time points postinfection compared to RRV-GFP. Moreover, we also examined several cellular genes that are known to be repressed by KSHV LANA and report that these genes are derepressed during de novo lytic infection with the RRVΔLANA/GFP virus compared to RRV-GFP. Finally, we also demonstrate that the RRVΔLANA/GFP virus fails to establish latency in B cells, as measured by the loss of GFP-positive cells and intracellular viral genomes

    Long-Range N14 Coupling in Ethyl Ammonium Ions

    Get PDF
    There has been considerable interest recently in the magnitudes and relative signs of CH3-X and CH2-X coupling constants in compounds of the type (CH3CH2)nX [2-6]. We wish to report the analysis of the spectra of N(CH2CH3)4+ and N(C2H5)3(CH2SCH3)+ and the confirmation of the assignments of these spectra by H1-{N14} [1] double resonance and by the temperature dependence of the proton spectra

    Interleukin 1 receptor-associated kinase 1 (IRAK1) mutation is a common, essential driver for Kaposi sarcoma herpesvirus lymphoma

    Get PDF
    Primary effusion lymphoma (PEL) is an AIDS-defining cancer. It is associated with Kaposi sarcoma-associated herpesvirus. To date, no sequencing studies have been conducted for this cancer. We used X chromosome-targeted next-generation sequencing to identify 33 genes with coding region mutations in 100% of cases, including in interleukin 1 receptor-associated kinase 1 (IRAK1). IRAK1 kinase modulates toll-like receptor signaling-mediated immune signaling. It binds to MyD88 adapter protein, which is mutated in a subset of diffuse large B-cell lymphomas. IRAK1, however, had not been linked to cancer. This IRAK1 mutant is constitutively active and essential for PEL survival. This highlights the importance of innate immunity signaling as drivers for cancer, particularly those caused by viruses. It also suggests IRAK1 kinase may be a potential target for therapy

    Labor Productivity - The Use of Staffing Guides and Other Productivity Methods in U.S. Hotels: A Survey Study

    Get PDF
    This paper examines the issue of labor productivity in hotels. It elaborates on various measurement methods used by American hoteliers including staffing guides, with a special focus on productivity standards. Advantages of physical, financial and mixed methods such as percentage methods, revenue per employee, value-added, Data Envelope Analysis and Stochastic Frontier Analysis are discussed. While the use of percentages and staffing guides were found to be commonplace, results revealed that some fairly stable standards were already in place in the surveyed hotels. Results also revealed that at least in the surveyed companies, few hoteliers attempted to monitor or improve revenue per employee, focusing instead on physical labor inputs and outputs or simple labor percentages

    A “Coiled-Coil” Motif Is Important for Oligomerization and DNA Binding Properties of Human Cytomegalovirus Protein UL77

    Get PDF
    Human cytomegalovirus (HCMV) UL77 gene encodes the essential protein UL77, its function is characterized in the present study. Immunoprecipitation identified monomeric and oligomeric pUL77 in HCMV infected cells. Immunostaining of purified virions and subviral fractions showed that pUL77 is a structural protein associated with capsids. In silico analysis revealed the presence of a coiled-coil motif (CCM) at the N-terminus of pUL77. Chemical cross-linking of either wild-type pUL77 or CCM deletion mutant (pUL77ΔCCM) implicated that CCM is critical for oligomerization of pUL77. Furthermore, co-immunoprecipitations of infected and transfected cells demonstrated that pUL77 interacts with the capsid-associated DNA packaging motor components, pUL56 and pUL104, as well as the major capsid protein. The ability of pUL77 to bind dsDNA was shown by an in vitro assay. Binding to certain DNA was further confirmed by an assay using biotinylated 36-, 250-, 500-, 1000-meric dsDNA and 966-meric HCMV-specific dsDNA designed for this study. The binding efficiency (BE) was determined by image processing program defining values above 1.0 as positive. While the BE of the pUL56 binding to the 36-mer bio-pac1 containing a packaging signal was 10.0±0.63, the one for pUL77 was only 0.2±0.03. In contrast to this observation the BE of pUL77 binding to bio-500 bp or bio-1000 bp was 2.2±0.41 and 4.9±0.71, respectively. By using pUL77ΔCCM it was demonstrated that this protein could not bind to dsDNA. These data indicated that pUL77 (i) could form homodimers, (ii) CCM of pUL77 is crucial for oligomerization and (iii) could bind to dsDNA in a sequence independent manner

    The incorporation of14C‐glycerol into different species of diglycerides and triglycerides in rat liver slices

    Full text link
    The relative rates of de novo synthesis of species of diglycerides and triglycerides from14C‐glycerol were examined in rat liver slices. Diglycerides containing one or two double bonds per molecule and triglycerides containing four or more double bonds per molecule represented 70% and 60% respectively of the newly synthesized diglycerides and triglycerides. The newly synthesized triglycerides were more unsaturated than the endogenous triglycerides. Our results suggest that a nonrandom synthesis of species of diglycerides occurred followed by an almost random utilization of the various diglyceride species for the biosynthesis of triglycerides.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142207/1/lipd0411.pd

    Heterogeneous grain-scale response in ferroic polycrystals under electric field

    Get PDF
    Understanding coupling of ferroic properties over grain boundaries and within clusters of grains in polycrystalline materials is hindered due to a lack of direct experimental methods to probe the behaviour of individual grains in the bulk of a material. Here, a variant of three-dimensional X-ray diffraction (3D-XRD) is used to resolve the non-180?? ferroelectric domain switching strain components of 191 grains from the bulk of a polycrystalline electro-ceramic that has undergone an electric-field-induced phase transformation. It is found that while the orientation of a given grain relative to the field direction has a significant influence on the phase and resultant domain texture, there are large deviations from the average behaviour at the grain scale. It is suggested that these deviations arise from local strain and electric field neighbourhoods being highly heterogeneous within the bulk polycrystal. Additionally, the minimisation of electrostatic potentials at the grain boundaries due to interacting ferroelectric domains must also be considered. It is found that the local grain-scale deviations average out over approximately 10-20 grains. These results provide unique insight into the grain-scale interactions of ferroic materials and will be of value for future efforts to comprehensively model these and related materials at that length-scaleopen

    Nucleophosmin Phosphorylation by v-Cyclin-CDK6 Controls KSHV Latency

    Get PDF
    Nucleophosmin (NPM) is a multifunctional nuclear phosphoprotein and a histone chaperone implicated in chromatin organization and transcription control. Oncogenic Kaposi's sarcoma herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma, primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). In the infected host cell KSHV displays two modes of infection, the latency and productive viral replication phases, involving extensive viral DNA replication and gene expression. A sustained balance between latency and reactivation to the productive infection state is essential for viral persistence and KSHV pathogenesis. Our study demonstrates that the KSHV v-cyclin and cellular CDK6 kinase phosphorylate NPM on threonine 199 (Thr199) in de novo and naturally KSHV-infected cells and that NPM is phosphorylated to the same site in primary KS tumors. Furthermore, v-cyclin-mediated phosphorylation of NPM engages the interaction between NPM and the latency-associated nuclear antigen LANA, a KSHV-encoded repressor of viral lytic replication. Strikingly, depletion of NPM in PEL cells leads to viral reactivation, and production of new infectious virus particles. Moreover, the phosphorylation of NPM negatively correlates with the level of spontaneous viral reactivation in PEL cells. This work demonstrates that NPM is a critical regulator of KSHV latency via functional interactions with v-cyclin and LANA

    Viral Profiling Identifies Multiple Subtypes of Kaposi's Sarcoma

    Get PDF
    ABSTRACTKaposi’s sarcoma (KS), caused by KS-associated herpesvirus (KSHV), is the most common cancer among HIV-infected patients in Malawi and in the United States today. In Malawi, KSHV is endemic. We conducted a cross-sectional study of patients with HIV infection and KS with no history of chemo- or antiretroviral therapy (ART). Seventy patients were enrolled. Eighty-one percent had T1 (advanced) KS. Median CD4 and HIV RNA levels were 181cells/mm3 and 138,641 copies/ml, respectively. We had complete information and suitable plasma and biopsy samples for 66 patients. For 59/66 (89%) patients, a detectable KSHV load was found in plasma (median, 2,291 copies/ml; interquartile range [IQR], 741 to 5,623). We utilized a novel KSHV real-time quantitative PCR (qPCR) array with multiple primers per open reading frame to examine KSHV transcription. Seventeen samples exhibited only minimal levels of KSHV mRNAs, presumably due to the limited number of infected cells. For all other biopsy samples, the viral latency locus (LANA, vCyc, vFLIP, kaposin, and microRNAs [miRNAs]) was transcribed abundantly, as was K15 mRNA. We could identify two subtypes of treatment-naive KS: lesions that transcribed viral RNAs across the length of the viral genome and lesions that displayed only limited transcription restricted to the latency locus. This finding demonstrates for the first time the existence of multiple subtypes of KS lesions in HIV- and KS-treatment naive patients.IMPORTANCEKS is the leading cancer in people infected with HIV worldwide and is causally linked to KSHV infection. Using viral transcription profiling, we have demonstrated the existence of multiple subtypes of KS lesions for the first time in HIV- and KS-treatment-naive patients. A substantial number of lesions transcribe mRNAs which encode the viral kinases and hence could be targeted by the antiviral drugs ganciclovir or AZT in addition to chemotherapy
    corecore