71 research outputs found

    Learning and Aging Related Changes in Intrinsic Neuronal Excitability

    Get PDF
    A goal of many laboratories that study aging is to find a key cellular change(s) that can be manipulated and restored to a young-like state, and thus, reverse the age-related cognitive deficits. We have chosen to focus our efforts on the alteration of intrinsic excitability (as reflected by the postburst afterhyperpolarization, AHP) during the learning process in hippocampal pyramidal neurons. We have consistently found that the postburst AHP is significantly reduced in hippocampal pyramidal neurons from young adults that have successfully learned a hippocampus-dependent task. In the context of aging, the baseline intrinsic excitability of hippocampal neurons is decreased and therefore cognitive learning is impaired. In aging animals that are able to learn, neuron changes in excitability similar to those seen in young neurons during learning occur. Our challenge, then, is to understand how and why excitability changes occur in neurons from aging brains and cause age-associated learning impairments. After understanding the changes, we should be able to formulate strategies for reversing them, thus making old neurons function more as they did when they were young. Such a reversal should rescue the age-related cognitive deficits

    BMP Signaling Mediates Effects of Exercise on Hippocampal Neurogenesis and Cognition in Mice

    Get PDF
    Exposure to exercise or to environmental enrichment increases the generation of new neurons in the adult hippocampus and promotes certain kinds of learning and memory. While the precise role of neurogenesis in cognition has been debated intensely, comparatively few studies have addressed the mechanisms linking environmental exposures to cellular and behavioral outcomes. Here we show that bone morphogenetic protein (BMP) signaling mediates the effects of exercise on neurogenesis and cognition in the adult hippocampus. Elective exercise reduces levels of hippocampal BMP signaling before and during its promotion of neurogenesis and learning. Transgenic mice with decreased BMP signaling or wild type mice infused with a BMP inhibitor both exhibit remarkable gains in hippocampal cognitive performance and neurogenesis, mirroring the effects of exercise. Conversely, transgenic mice with increased BMP signaling have diminished hippocampal neurogenesis and impaired cognition. Exercise exposure does not rescue these deficits, suggesting that reduced BMP signaling is required for environmental effects on neurogenesis and learning. Together, these observations show that BMP signaling is a fundamental mechanism linking environmental exposure with changes in cognitive function and cellular properties in the hippocampus

    BACE1 Deficiency Rescues Memory Deficits and Cholinergic Dysfunction in a Mouse Model of Alzheimer's Disease

    Get PDF
    Abstractβ-site APP cleaving enzyme 1 (BACE1) is the β-secretase enzyme required for generating pathogenic β-amyloid (Aβ) peptides in Alzheimer's disease (AD). BACE1 knockout mice lack Aβ and are phenotypically normal, suggesting that therapeutic inhibition of BACE1 may be free of mechanism-based side effects. However, direct evidence that BACE1 inhibition would improve cognition is lacking. Here we show that BACE1 null mice engineered to overexpress human APP (BACE1−/−·Tg2576+) are rescued from Aβ-dependent hippocampal memory deficits. Moreover, impaired hippocampal cholinergic regulation of neuronal excitability found in the Tg2576 AD model is ameliorated in BACE1−/−·Tg2576+ bigenic mice. The behavioral and electrophysiological rescue of deficits in BACE1−/−·Tg2576+ mice is correlated with a dramatic reduction of cerebral Aβ40 and Aβ42 levels and occurs before amyloid deposition in Tg2576 mice. Our gene-based approach demonstrates that lower Aβ levels are beneficial for AD-associated memory impairments, validating BACE1 as a therapeutic target for AD

    Metrifonate increases neuronal excitability in CA1 pyramidal neurons from both young and aging rabbit hippocampus

    Get PDF
    The effects of metrifonate, a second generation cholinesterase inhibitor, were examined on CA1 pyramidal neurons from hippocampal slices of young and aging rabbits using currentclamp, intracellular recording techniques. Bath perfusion of metrifonate (10-200 M) dose-dependently decreased both postburst afterhyperpolarization (AHP) and spike frequency adaptation (accommodation) in neurons from young and aging rabbits (AHP: p Ͻ 0.002, young; p Ͻ 0.050, aging; accommodation: p Ͻ 0.024, young; p Ͻ 0.001, aging). These reductions were mediated by muscarinic cholinergic transmission, because they were blocked by addition of atropine (1 M) to the perfusate. The effects of chronic metrifonate treatment (12 mg/kg for 3 weeks) on CA1 neurons of aging rabbits were also examined ex vivo. Neurons from aging rabbits chronically treated with metrifonate had significantly reduced spike frequency accommodation, compared with vehicle-treated rabbits. Chronic metrifonate treatment did not result in a desensitization to metrifonate ex vivo, because bath perfusion of metrifonate (50 M) significantly decreased the AHP and accommodation in neurons from both chronically metrifonateand vehicle-treated aging rabbits. We propose that the facilitating effect of chronic metrifonate treatment on acquisition of hippocampus-dependent tasks such as trace eyeblink conditioning by aging subjects may be caused by this increased excitability of CA1 pyramidal neurons

    Exploring prefrontal cortical memory mechanisms with eyeblink conditioning.

    No full text

    Eyeblink Conditioning and Novel Object Recognition in the Rabbit: Behavioral Paradigms for Assaying Psychiatric Diseases

    No full text
    Analysis of data collected from behavioral paradigms has provided important information for understanding the etiology and progression of diseases that involve neural regions mediating abnormal behavior. The trace eyeblink conditioning (EBC) paradigm is particularly suited to examine cerebro-cerebellar interactions since the paradigm requires the cerebellum, forebrain, and awareness of the stimulus contingencies. Impairments in acquiring EBC have been noted in several neuropsychiatric conditions including schizophrenia, Alzheimer’s disease (AD), progressive supranuclear palsy (PSP) and post-traumatic stress disorder (PTSD). Although several species have been used to examine EBC, the rabbit is unique in its tolerance for restraint which facilitates imaging, its relatively large skull which facilitates chronic neuronal recordings, a genetic sequence for amyloid that is identical to humans which makes it a valuable model to study AD, and in contrast to rodents, it has a striatum that is differentiated into a caudate and a putamen which facilitates analysis of diseases involving the striatum. This review focuses on EBC during schizophrenia and AD since impairments in cerebro-cerebellar connections have been hypothesized to lead to a cognitive dysmetria. We also relate EBC to conditioned avoidance responses that are more often examined for effects of antipsychotic medications, and we propose that an analysis of novel object recognition (NOR) may add to our understanding of how the underlying neural circuitry has changed during disease states. We propose that the EBC and NOR paradigms will help to determine which therapeutics are effective for treating the cognitive aspects of schizophrenia and AD, and that neuroimaging may reveal biomarkers of the diseases and help to evaluate potential therapeutics. The rabbit thus provides an important translational system for studying neural mechanisms mediating maladaptive behaviors that underlie some psychiatric diseases, especially cognitive impairments associated with schizophrenia and AD, and object recognition provides a simple test of memory that can corroborate the results of EBC
    corecore