1,893 research outputs found

    Convergence and consistency analysis for extended Kalman filter based SLAM

    Full text link
    This paper investigates the convergence properties and consistency of Extended Kalman Filter (EKF) based simultaneous localization and mapping (SLAM) algorithms. Proofs of convergence are provided for the nonlinear two-dimensional SLAM problem with point landmarks observed using a range-and- bearing sensor. It is shown that the robot orientation uncertainty at the instant when landmarks are first observed has a significant effect on the limit and/or the lower bound of the uncertainties of the landmark position estimates. This paper also provides some insights to the inconsistencies of EKF based SLAM that have been recently observed. The fundamental cause of EKF SLAM inconsistency for two basic scenarios are clearly stated and associated theoretical proofs are provided. © 2007 IEEE

    Robot path planning in a social context

    Full text link
    Human robot interaction has attracted significant attention over the last couple of years. An important aspect of such robotic systems is to share the working space with humans and carry out the tasks in a socially acceptable way. In this paper, we address the problem of fusing socially acceptable behaviours into robot path planning. By observing an environment for a while, the robot learns human motion patterns based on sampled Hidden Markov Models and utilises them in a Probabilistic Roadmap based path planning algorithm. This will minimise the social distractions, such as going through someone else's working space (due to the shortest path), by planning the path through minimal distractions, leading to human-like behaviours. The algorithm is implemented in Orca/C++ with appealing results in real world experiments. ©2010 IEEE

    Wastewater agriculture in Kurunegala City, Sri Lanka

    Get PDF
    Wastewater irrigation / Irrigation canals / Rivers / Urban agriculture / Farmers associations / Rain / Soil properties / Rice / Crop management / Fertilizers / Paddy fields / Sri Lanka / Kurunegala City / Beu Ela / Wan Ela

    Models of motion patterns for mobile robotic systems

    Full text link
    Human robot interaction is an emerging area of research with many challenges. Knowledge about human behaviors could lead to more effective and efficient interactions of a robot in populated environments. This paper presents a probabilistic framework for the learning and representation of human motion patterns in an office environment. It is based on the observation that most human trajectories are not random. Instead people plan trajectories based on many considerations, such as social rules and path length. Motion patterns are learned using an incrementally growing Sampled Hidden Markov Model. This model has a number of interesting properties which can be of use in many applications. For example, the learned knowledge can be used to predict motion, infer social rules, thus improve a robot's operation and its interaction with people in a populated space. The proposed learning method is extensively validated in real world experiments. ©2010 IEEE

    Using common motion patterns to improve a robot's operation in populated environments

    Full text link
    Robotic devices are increasingly penetrating the human work spaces as stand alone units and helpers. It is believed that a robot could be easily integrated with humans, if the robot can learn how to behave in a socially acceptable manner. This involves a robot to observe, learn and comply with basic rules of human behaviors. As an example, one would expect a robot to travel in an environment without intruding human workspaces unnecessarily. Thus, identifying common motion patterns of people by observing a specific environment is an important task as people's trajectories are usually not random, however are tailored to the way the environment is structured. We propose a learning algorithm to construct a Sampled Hidden Markov Model (SHMM) that captures behavior of people through observations and then demonstrate how this model could be exploited for planning socially aware paths. Experimental results are presented to demonstrate the viability of the proposed approach. ©2010 IEEE
    • …
    corecore