899 research outputs found

    Multi-class classification for semantic labeling of places

    Full text link
    Human robot interaction is an emerging area of research, where human understandable robotic representations can play a major role. Knowledge of semantic labels of places can be used to effectively communicate with people and to develop efficient navigation solutions in complex environments. In this paper, we propose a new approach that enables a robot to learn and classify observations in an indoor environment using a labeled semantic grid map, which is similar to an Occupancy Grid like representation. Classification of the places based on data collected by laser range finder (LRF) is achieved through a machine learning approach, which implements logistic regression as a multi-class classifier. The classifier output is probabilistically fused using independent opinion pool strategy. Appealing experimental results are presented based on a data set gathered in various indoor scenarios. ©2010 IEEE

    Laser range data based semantic labeling of places

    Full text link
    Extending metric space representations of an environment with other high level information, such as semantic and topological representations enable a robotic device to efficiently operate in complex environments. This paper proposes a methodology for a robot to classify indoor environments into semantic categories. Classification task, using data collected from a laser range finder, is achieved by a machine learning approach based on the logistic regression algorithm. The classification is followed by a probabilistic temporal update of the semantic labels of places. The innovation here is that the new algorithm is able to classify parts of a single laser scan into different semantic labels rather than the conventional approach of gross categorization of locations based on the whole laser scan. We demonstrate the effectiveness of the algorithm using a data set available in the public domain. ©2010 IEEE

    Semantic grid map building

    Full text link
    Conventional Occupancy Grid (OG) map which contains occupied and unoccupied cells can be enhanced by incorporating semantic labels of places to build semantic grid map. Map with semantic information is more understandable to humans and hence can be used for efficient communication, leading to effective human robot interactions. This paper proposes a new approach that enables a robot to explore an indoor environment to build an occupancy grid map and then perform semantic labeling to generate a semantic grid map. Geometrical information is obtained by classifying the places into three different semantic classes based on data collected by a 2D laser range finder. Classification is achieved by implementing logistic regression as a multi-class classifier, and the results are combined in a probabilistic framework. Labeling accuracy is further improved by topological correction on robot position map which is an intermediate product, and also by outlier removal process on semantic grid map. Simulation on data collected in a university environment shows appealing results

    Linear SLAM: Linearising the SLAM problems using submap joining

    Full text link
    © 2018 Elsevier Ltd The main contribution of this paper is a new submap joining based approach for solving large-scale Simultaneous Localization and Mapping (SLAM) problems. Each local submap is independently built using the local information through solving a small-scale SLAM; the joining of submaps mainly involves solving linear least squares and performing nonlinear coordinate transformations. Through approximating the local submap information as the state estimate and its corresponding information matrix, judiciously selecting the submap coordinate frames, and approximating the joining of a large number of submaps by joining only two maps at a time, either sequentially or in a more efficient Divide and Conquer manner, the nonlinear optimization process involved in most of the existing submap joining approaches is avoided. Thus the proposed submap joining algorithm does not require initial guess or iterations since linear least squares problems have closed-form solutions. The proposed Linear SLAM technique is applicable to feature-based SLAM, pose graph SLAM and D-SLAM, in both two and three dimensions, and does not require any assumption on the character of the covariance matrices. Simulations and experiments are performed to evaluate the proposed Linear SLAM algorithm. Results using publicly available datasets in 2D and 3D show that Linear SLAM produces results that are very close to the best solutions that can be obtained using full nonlinear optimization algorithm started from an accurate initial guess. The C/C++ and MATLAB source codes of Linear SLAM are available on OpenSLAM

    Linear SFM: A hierarchical approach to solving structure-from-motion problems by decoupling the linear and nonlinear components

    Full text link
    © 2018 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) This paper presents a novel hierarchical approach to solving structure-from-motion (SFM) problems. The algorithm begins with small local reconstructions based on nonlinear bundle adjustment (BA). These are then joined in a hierarchical manner using a strategy that requires solving a linear least squares optimization problem followed by a nonlinear transform. The algorithm can handle ordered monocular and stereo image sequences. Two stereo images or three monocular images are adequate for building each initial reconstruction. The bulk of the computation involves solving a linear least squares problem and, therefore, the proposed algorithm avoids three major issues associated with most of the nonlinear optimization algorithms currently used for SFM: the need for a reasonably accurate initial estimate, the need for iterations, and the possibility of being trapped in a local minimum. Also, by summarizing all the original observations into the small local reconstructions with associated information matrices, the proposed Linear SFM manages to preserve all the information contained in the observations. The paper also demonstrates that the proposed problem formulation results in a sparse structure that leads to an efficient numerical implementation. The experimental results using publicly available datasets show that the proposed algorithm yields solutions that are very close to those obtained using a global BA starting with an accurate initial estimate. The C/C++ source code of the proposed algorithm is publicly available at https://github.com/LiangZhaoPKUImperial/LinearSFM

    A new feature parametrization for monocular SLAM using line features

    Full text link
    © 2014 Cambridge University Press. This paper presents a new monocular SLAM algorithm that uses straight lines extracted from images to represent the environment. A line is parametrized by two pairs of azimuth and elevation angles together with the two corresponding camera centres as anchors making the feature initialization relatively straightforward. There is no redundancy in the state vector as this is a minimal representation. A bundle adjustment (BA) algorithm that minimizes the reprojection error of the line features is developed for solving the monocular SLAM problem with only line features. A new map joining algorithm which can automatically optimize the relative scales of the local maps is used to combine the local maps generated using BA. Results from both simulations and experimental datasets are used to demonstrate the accuracy and consistency of the proposed BA and map joining algorithms

    Extending parallax parameterised bundle adjustment to stereo

    Full text link
    The main contribution of this paper is the extension of the ParllaxBA algorithm proposed by [Zhao et al., 2015] into stereo. Simulated and experimental datasets are used to evaluate Cartesian and parallax angle parameterisation for stereo bundle adjustment. It is demonstrated that, like monocular ParallaxBA, under normal conditions the two algorithms perform similarly. However, when the parallax angle of landmarks is low, parallax parameterisation can converge to a lower cost and in less time than the traditional Cartesian parameterisation

    Line matching based on planar homography for stereo aerial images

    Full text link
    © 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). We propose an efficient line matching algorithm for a pair of calibrated aerial photogrammetric images, which makes use of sparse 3D points triangulated from 2D point feature correspondences to guide line matching based on planar homography. Two different strategies are applied in the proposed line matching algorithm for two different cases. When three or more points can be found coplanar with the line segment to be matched, the points are used to fit a plane and obtain an accurate planar homography. When one or two points can be found, the approximate terrain plane parallel to the line segment is utilized to compute an approximate planar homography. Six pairs of rural or urban aerial images are used to demonstrate the efficiency and validity of the proposed algorithm. Compared with line matching based on 2D point feature correspondences, the proposed method can increase the number of correctly matched line segments. In addition, compared with most line matching methods that do not use 2D point feature correspondences, the proposed method has better efficiency, although it obtains fewer matches. The C/C++ source code for the proposed algorithm is available at http://services.eng.uts.edu.au/~sdhuang/research.htm

    ParallaxBA: Bundle adjustment using parallax angle feature parametrization

    Full text link
    ©The Author(s) 2015. The main contribution of this paper is a novel feature parametrization based on parallax angles for bundle adjustment (BA) in structure and motion estimation from monocular images. It is demonstrated that under certain conditions, describing feature locations using their Euclidean XYZ coordinates or using inverse depth in BA leads to ill-conditioned normal equations as well as objective functions that have very small gradients with respect to some of the parameters describing feature locations. The proposed parallax angle feature parametrization in BA (ParallaxBA) avoids both of the above problems leading to better convergence properties and more accurate motion and structure estimates. Simulation and experimental datasets are used to demonstrate the impact of different feature parametrizations on BA, and the improved convergence, efficiency and accuracy of the proposed ParallaxBA algorithm when compared with some existing BA packages such as SBA, sSBA and g2o. The C/C++ source code of ParallaxBA is available on OpenSLAM (https://openslam.org/)

    Locational optimization based sensor placement for monitoring Gaussian processes modeled spatial phenomena

    Full text link
    This paper addresses the sensor placement problem associated with monitoring spatial phenomena, where mobile sensors are located on the optimal sampling paths yielding a lower prediction error. It is proposed that the spatial phenomenon to be monitored is modeled using a Gaussian Process and a variance based density function is employed to develop an expected-value function. A locational optimization based effective algorithm is employed to solve the resulting minimization of the expected-value function. We designed a mutual information based strategy to select the most informative subset of measurements effectively with low computational time. Our experimental results on real-world datasets have verified the superiority of the proposed approach. © 2013 IEEE
    • …
    corecore