226 research outputs found

    Disk Galaxies in the Outer Local Supercluster: Optical CCD Surface Photometry and Distribution of Galaxy Disk Parameters

    Get PDF
    We report new B-band CCD surface photometry on a sample of 76 disk galaxies brighter than B_T = 14.5 mag in the Uppsala General Catalogue of Galaxies, which are confined within a volume located in the outer part of the Local Supercluster. With our earlier published I-band CCD and high S/N-ratio 21cm HI data (Lu et al. 1993), this paper completes our optical surface photometry campaign on this galaxy sample. As an application of this data set, the B-band photometry is used here to illustrate two selection effects which have been somewhat overlooked in the literature, but which may be important in deriving the distribution function of disk central surface brightness (CSB) of disk galaxies from a diameter or/and flux limited sample: a Malmquist-type bias against disk galaxies with small disk scale lengths (DSL) at a given CSB; and a disk inclination dependent selection effect that may, for example, bias toward inclined disks near the threshold of a diameter limited selection if disks are not completely opaque in optical. Taking into consideration these selection effects, we present a method of constructing a volume sampling function and a way to interpret the derived distribution function of CSB and DSL. Application of this method to our galaxy sample implies that if galaxy disks are optically thin, CSB and DSL may well be correlated in the sense that, up to an inclination-corrected limiting CSB of about 24.5 mag per square arcsec that is adequately probed by our galaxy sample, the DSL distribution of galaxies with a lower CSB may have a longer tail toward large values unless the distribution of disk galaxies as a function of CSB rises rapidly toward faint values.Comment: 27 pages including 9 figures and 2 tables. To appear in the October 20, 1998 issue of the Astrophysical Journa

    New Galaxies Discovered in the First Blind HI Survey of the Centaurus A Group

    Get PDF
    We have commenced a 21-cm survey of the entire southern sky (\delta < 0 degrees, -1200 km/s < v < 12700 km/s) which is ''blind'', i.e. unbiased by previous optical information. In the present paper we report on the results of a pilot project which is based on data from this all-sky survey. The project was carried out on an area of 600 square degrees centred on the nearby Centaurus A (Cen A) group of galaxies at a mean velocity of v ~ 500 km/s. This was recently the subject of a separate and thorough optical survey. We found 10 new group members to add to the 21 galaxies already known in the Cen A group: five of these are previously uncatalogued galaxies, while five were previously catalogued but not known to be associated with the group. We found optical counterparts for all the HI detections, most of them intrinsically very faint low surface brightness dwarfs. The new group members add approximately 6% to the HI mass of the group and 4% to its light. The HI mass function, derived from all the known group galaxies in the interval 10^7 \Msun of HI to 10^9 \Msun of HI, has a faint-end slope of 1.30 +/- 0.15, allowing us to rule out a slope of 1.7 at 95% confidence. Even if the number in the lowest mass bin is increased by 50%, the slope only increases to 1.45 +/- 0.15.Comment: 19 pages Latex, 6 figures (Fig. 2 in four parts, Fig.5 in two parts). To appear in The Astrophysical Journal (Vol. 524, October 1999

    An Extragalactic HI Cloud with No Optical Counterpart?

    Get PDF
    We report the discovery, from the HI Parkes All-Sky Survey (HIPASS), of an isolated cloud of neutral hydrogen which we believe to be extragalactic. The HI mass of the cloud (HIPASS J1712-64) is very low, 1.7 x 10^7 Msun, using an estimated distance of ~3.2 Mpc. Most significantly, we have found no optical companion to this object to very faint limits (mu(B)~ 27 mag arcsec^-2). HIPASS J1712-64 appears to be a binary system similar to, but much less massive than, HI 1225+01 (the Virgo HI Cloud) and has a size of at least 15 kpc. The mean velocity dispersion, measured with the Australia Telescope Compact Array (ATCA), is only 4 km/s for the main component and because of the weak or non-existent star-formation, possibly reflects the thermal linewidth (T<2000 K) rather than bulk motion or turbulence. The peak column density for HIPASS J1712-64, from the combined Parkes and ATCA data, is only 3.5 x 10^19 cm^-2, which is estimated to be a factor of two below the critical threshold for star formation. Apart from its significantly higher velocity, the properties of HIPASS J1712-64 are similar to the recently recognised class of Compact High Velocity Clouds. We therefore consider the evidence for a Local Group or Galactic origin, although a more plausible alternative is that HIPASS J1712-64 was ejected from the interacting Magellanic Cloud/Galaxy system at perigalacticon ~ 2 x 10^8 yr ago.Comment: 23 pages, 7 figures, AJ accepte

    Planetary Nebulae as standard candles XI. Application to Spiral Galaxies

    Get PDF
    We report the results of an [O III] lambda 5007 survey for planetary nebulae (PN) in three spiral galaxies: M101 (NGC 5457), M51 (NGC 5194/5195) and M96 (NGC 3368). By comparing on-band/off-band [O III] lambda 5007 images with images taken in H-alpha and broadband R, we identify 65, 64 and 74 PN candidates in each galaxy, respectively. From these data, an adopted M31 distance of 770 kpc, and the empirical planetary nebula luminosity function (PNLF), we derive distances to M101, M51, and M96 of 7.7 +/- 0.5, 8.4 +/- 0.6, and 9.6 +/- 0.6 Mpc. These observations demonstrate that the PNLF technique can be successfully applied to late-type galaxies, and provide an important overlap between the Population I and Population II distance scales. We also discuss some special problems associated with using the PNLF in spiral galaxies, including the effects of dust and the possible presence of [O III] bright supernova remnants.Comment: 38 pages, TeX, with tables included but not figures. Uses epsf.tex and kpnobasic.tex. To be published in the Astophysical Journal. Full paper is available at http://www.astro.psu.edu/users/johnf/Text/research.htm

    The Apparent Fractal Conjecture: Scaling Features in Standard Cosmologies

    Full text link
    This paper presents an analysis of the smoothness problem in cosmology by focussing on the ambiguities originated in the simplifying hypotheses aimed at observationally verifying if the large-scale distribution of galaxies is homogeneous, and conjecturing that this distribution should follow a fractal pattern in perturbed standard cosmologies. This is due to a geometrical effect, appearing when certain types of average densities are calculated along the past light cone. The paper starts reviewing the argument concerning the possibility that the galaxy distribution follows such a scaling pattern, and the premises behind the assumption that the spatial homogeneity of standard cosmology can be observable. Next, it is argued that to discuss observable homogeneity one needs to make a clear distinction between local and average relativistic densities, and showing how the different distance definitions strongly affect them, leading the various average densities to display asymptotically opposite behaviours. Then the paper revisits Ribeiro's (1995: astro-ph/9910145) results, showing that in a fully relativistic treatment some observational average densities of the flat Friedmann model are not well defined at z ~ 0.1, implying that at this range average densities behave in a fundamentally different manner as compared to the linearity of the Hubble law, well valid for z < 1. This conclusion brings into question the widespread assumption that relativistic corrections can always be neglected at low z. It is also shown how some key features of fractal cosmologies can be found in the Friedmann models. In view of those findings, it is suggested that the so-called contradiction between the cosmological principle, and the galaxy distribution forming an unlimited fractal structure, may not exist.Comment: 30 pages, 2 figures, LaTeX. This paper is a follow-up to gr-qc/9909093. Accepted for publication in "General Relativity and Gravitation

    HIPASS High-Velocity Clouds: Properties of the Compact and Extended Populations

    Get PDF
    A catalog of Southern anomalous-velocity HI clouds at Decl. < +2 deg is presented, based on data from the HI Parkes All-Sky Survey (HIPASS). The improved sensitivity (5sigma: T_B = 0.04 K) and resolution (15.5') of the HIPASS data results in a substantial increase in the number of individual clouds (1956, as well as 41 galaxies) compared to previous surveys. Most high-velocity emission features, HVCs, have a filamentary morphology and are loosely organized into large complexes extending over tens of degrees. In addition, 179 compact and isolated anomalous-velocity objects, CHVCs, are identified based on their size and degree of isolation. 25% of the CHVCs originally classified by Braun & Burton (1999) are reclassified. Both the entire population of high-velocity emission features and the CHVCs alone have typical HI masses of ~ 4.5 D(kpc)^2 solar masses and have similar slopes for their column density and flux distributions. On the other hand, the CHVCs appear to be clustered and the population can be broken up into three spatially distinct groups, while the entire population of clouds is more uniformly distributed with a significant percentage aligned with the Magellanic Stream. The median velocities are V_GSR = -38 km/s for the CHVCs and -30 km/s for all of the anomalous-velocity clouds. Based on the catalog sizes, high-velocity features cover 19% of the southern sky and CHVCs cover 1%. (abridged)Comment: 32 pages, 26 figures in gif format, 2 ascii tables, to appear in the Jan 2002 issue of The Astronomical Journal, high resolution version available at http://origins.Colorado.EDU/~mputman/pubs.htm

    HIPASS Detection of an Intergalactic Gas Cloud in the NGC 2442 Group

    Get PDF
    We report the discovery, from the HI Parkes All-Sky Survey (HIPASS), of a gas cloud associated with the asymmetric spiral galaxy NGC 2442. This object, designated HIPASS J0731-69, contains ~10^9 M_sun of HI, or nearly one-third as much atomic gas as NGC 2442 itself. No optical counterpart to any part of HIPASS J0731-69 has yet been identified, consistent with the gas being diffuse, and with its stream-like kinematics. If the gas in HIPASS J0731-69 was once part of NGC 2442, then it was most likely a fairly recent tidal encounter with a moderately massive companion which tore it loose, although the possibility of ram-pressure stripping cannot be ruled out. This discovery highlights the potential of the HIPASS data for yielding new clues to the nature of some of the best-known galaxies in the local universe.Comment: 8 pages, 4 figures, uses "emulateapj5.sty". Accepted for publication in ApJ, Vol. 555, 1 July 2001. Figs 1 and 2 included as JPE

    A comparative HST imaging study of the host galaxies of radio-quiet quasars, radio-loud quasars and radio galaxies: Paper I

    Get PDF
    We present the first results from a major HST WFPC2 imaging study aimed at providing the first statistically meaningful comparison of the morphologies, luminosities, scalelengths and colours of the host galaxies of radio-quiet quasars, radio-loud quasars, and radio galaxies. We describe the design of this study and present the images which have been obtained for the first half of our 33-source sample. We find that the hosts of all three classes of luminous AGN are massive elliptical galaxies, with scalelengths ~=10 kpc, and R-K colours consistent with mature stellar populations. Most importantly this is the the first unambiguous evidence that, just like radio-loud quasars, essentially all radio-quiet quasars brighter than M_R = -24 reside in massive ellipticals. This result removes the possibility that radio `loudness' is directly linked to host galaxy morphology, but is however in excellent accord with the black-hole/spheroid mass correlation recently highlighted by Magorrian et al. (1998). We apply the relations given by Magorrian et al. to infer the expected Eddington luminosity of the putative black hole at the centre of each of the spheroidal host galaxies we have uncovered. Comparison with the actual nuclear R-band luminosities suggests that the black holes in most of these galaxies are radiating at a few percent of the Eddington luminosity; the brightest host galaxies in our low-z sample are capable of hosting quasars with M_R = -28, comparable to the most luminous quasars at z = 3. Finally we discuss our host-derived black-hole masses in the context of the radio-luminosity:black-hole mass correlation recently uncovered for nearby galaxies by Franceschini et al. (1998), and the resulting implications for the physical origin of radio loudness.Comment: Submitted for publication in the Astrophysical Journal, 55 pages of latex, plus 12 postscript figures (Figures 1a-1s (greyscales of images and model fits, and Figures 2a-2g (luminosity profiles and model fits) can be downloaded from http://www.roe.ac.uk/astronomy/html/rjm1.shtml

    The 1000 Brightest HIPASS Galaxies: HI Mass Function and Omega_HI

    Get PDF
    We present a new accurate measurement of the HI mass function of galaxies from the HIPASS Bright Galaxy Catalog, a sample of 1000 galaxies with the highest HI peak flux densities in the southern hemisphere (Koribalski et al. 2003). This sample spans nearly four orders of magnitude in HI mass (from log M_HI/M_sun=6.8 to 10.6, H0=75) and is the largest sample of HI selected galaxies to date. We develop a bivariate maximum likelihood technique to measure the space density of galaxies, and show that this is a robust method, insensitive to the effects of large scale structure. The resulting HI mass function can be fitted satisfactorily with a Schechter function with faint-end slope alpha=-1.30. This slope is found to be dependent on morphological type, with later type galaxies giving steeper slopes. We extensively test various effects that potentially bias the determination of the HI mass function, including peculiar motions of galaxies, large scale structure, selection bias, and inclination effects, and quantify these biases. The large sample of galaxies enables an accurate measurement of the cosmological mass density of neutral gas: Omega_HI=(3.8 +/- 0.6) x 10^{-4}. Low surface brightness galaxies contribute only 15% to this value, consistent with previous findings.Comment: accepted for publication in Astronomical Journal, 16 pages, including 17 figures. Corrected typos and reference
    • 

    corecore