249 research outputs found
The Local Semicircle Law for Random Matrices with a Fourfold Symmetry
We consider real symmetric and complex Hermitian random matrices with the
additional symmetry . The matrix elements are independent
(up to the fourfold symmetry) and not necessarily identically distributed. This
ensemble naturally arises as the Fourier transform of a Gaussian orthogonal
ensemble (GOE). It also occurs as the flip matrix model - an approximation of
the two-dimensional Anderson model at small disorder. We show that the density
of states converges to the Wigner semicircle law despite the new symmetry type.
We also prove the local version of the semicircle law on the optimal scale.Comment: 20 pages, to appear in J. Math. Phy
Semi-classical analysis of non self-adjoint transfer matrices in statistical mechanics. I
We propose a way to study one-dimensional statistical mechanics models with
complex-valued action using transfer operators. The argument consists of two
steps. First, the contour of integration is deformed so that the associated
transfer operator is a perturbation of a normal one. Then the transfer operator
is studied using methods of semi-classical analysis.
In this paper we concentrate on the second step, the main technical result
being a semi-classical estimate for powers of an integral operator which is
approximately normal.Comment: 28 pp, improved the presentatio
Interacting Fermi liquid at finite temperature: Part I: Convergent Attributions
Using the method of continuous renormalization group around the Fermi
surface, we prove that a two-dimensional jellium interacting system of Fermions
at low temperature T is a Fermi liquid (analytic in the coupling constant g)
for g < const/|logT|, and satisfying uniform bounds on the first and second
derivatives of the selfenergy. This bound is also a step in the program of
rigorous (non-perturbative) study of the BCS phase transition for many Fermions
systems; it proves in particular that in dimension two the transition
temperature (if any) must be non-perturbative in the coupling constant. The
proof is organized into two parts: the present paper deals with the convergent
contributions, and a companion paper (Part II) deals with the renormalization
of dangerous two point subgraphs and achieves the proof.Comment: Latex, 54 pages, 6 figures, minor change
One-loop functions of a translation-invariant renormalizable noncommutative scalar model
Recently, a new type of renormalizable scalar model on
the Moyal space was proved to be perturbatively renormalizable. It is
translation-invariant and introduces in the action a term. We
calculate here the and functions at one-loop level for this
model. The coupling constant function is proved to have the
same behaviour as the one of the model on the commutative
. The function of the new parameter is also
calculated. Some interpretation of these results are done.Comment: 13 pages, 3 figure
Anderson localization vs. Mott-Hubbard metal-insulator transition in disordered, interacting lattice fermion systems
We review recent progress in our theoretical understanding of strongly
correlated fermion systems in the presence of disorder. Results were obtained
by the application of a powerful nonperturbative approach, the Dynamical
Mean-Field Theory (DMFT), to interacting disordered lattice fermions. In
particular, we demonstrate that DMFT combined with geometric averaging over
disorder can capture Anderson localization and Mott insulating phases on the
level of one-particle correlation functions. Results are presented for the
ground-state phase diagram of the Anderson-Hubbard model at half filling, both
in the paramagnetic phase and in the presence of antiferromagnetic order. We
find a new antiferromagnetic metal which is stabilized by disorder. Possible
realizations of these quantum phases with ultracold fermions in optical
lattices are discussed.Comment: 25 pages, 5 figures, typos corrected, references update
- …