3 research outputs found

    Moistube irrigation fouling due to anaerobic filtered effluent (AF) and horizontal flow constructed wetland (HFCW) effluent.

    Get PDF
    The study assessed the suitability of two effluent types, namely anaerobic filtered (AF) and horizontal flow constructed wetland (HFCW) effluent for Moistube irrigation (MTI). Secondary to this, the study determined the plugging coefficients (α) on MTI for the respective effluents. The feed water was supplied from a raised tank (3.5 m), and mass-flow rates were recorded at 15 min intervals using an electronic balance. The effluent feed water concentrations and experimental room temperature (25 °C ± 1 °C) were continuously monitored and kept constant. Hermia's models based on the [Formula: see text] coefficient was used to select the best fitting fouling mechanism model and, consequently, the plugging coefficients. In addition, microbial colony analysis and scanning electron microscopy (SEM) analysis was carried out to assess the composition of the deposited sediment (DS) and adhered bacterial film (ABF) onto the MTI lateral. The study revealed that MTI pore blocking was a complex phenomenon described by complete pore-blocking model ([Formula: see text] ≥ 0.50). Discharge followed an exponential decay with early fouling observed on AF effluent because of a high concentration of total suspended solids (TSS) and dissolved organic matter (DOM). Discharge declined by 50% after 20 and 10 h of intermittent operation for AF and HFCW effluent, respectively. The α for each effluent (foulant) were [Formula: see text] = 0.07 and [Formula: see text] = 0.05, respectively, for AF and HFCW. The microbial analysis revealed bacterial aggregation structures that contributed to pore blocking. SEM imaging revealed complete surface coverage by deposited sediment. It is concluded that water quality determines the operation life span of MTI, and the two effluents promote accelerated MTI pore fouling or blocking. Continuous use without flushing the MTI will promote membrane degradation and reduced discharge efficiency. Additional filtration can potentially mitigate the membrane degradation process

    Development and validation of a model for soil wetting geometry under Moistube Irrigation.

    No full text
    We developed an empirical soil wetting geometry model for silty clay loam and coarse sand soils under a semi-permeable porous wall line source Moistube Irrigation (MTI) lateral irrigation. The model was developed to simulate vertical and lateral soil water movement using the Buckingham pi (π) theorem. This study was premised on a hypothesis that soil hydraulic properties influence soil water movement under MTI. Two independent, but similar experiments, were conducted to calibrate and validate the model using MTI lateral placed at a depth of 0.2 m below the soil surface in a soil bin with a continuous water supply (150 kPa). Soil water content was measured every 5 min for 100 h using MPS-2 sensors. Model calibration showed that soil texture influenced water movement ([Formula: see text] < 0.05) and showed a good fit for wetted widths and depths for both soils ([Formula: see text] = 0.5-10%; [Formula: see text] 0.50; and d-index [Formula: see text] 0.50. The percentage bias [Formula: see text] statistic revealed that the models' under-estimated wetted depth after 24 h by 21.9% and 3.9% for silty clay loam and sandy soil, respectively. Sensitivity analysis revealed agreeable models' performance values. This implies the model's applicability for estimating wetted distances for an MTI lateral placed at 0.2 m and MTI operating pressure of 150 kPa. We concluded that the models are prescriptive and should be used to estimate wetting geometries for conditions under which they were developed. Further experimentation under varying scenarios for which MTI would be used, including field conditions, is needed to further validate the model and establish robustness. MTI wetting geometry informs placement depth for optimal irrigation water usage
    corecore