4 research outputs found

    Grazing of Nuclearia thermophila and Nuclearia delicatula (Nucleariidae, Opisthokonta) on the toxic cyanobacterium Planktothrix rubescens

    Full text link
    During the last decades, the planktonic cyanobacterium Planktothrix rubescens became a dominant primary producer in many deep pre-alpine lakes. While altered physiochemical conditions due to lake warming seem to favour this cyanobacterial species, its dominance is partly attributed to factors conferring grazing resistance. The rigid structure of the cyanobacterial filaments and toxic secondary metabolites (e.g. microcystins) protect against diverse grazers. Nonetheless, species of the protistan genus Nuclearia (Nucleariidae, Opisthokonta) are able to overcome this grazing protection. Time lapse video documentation served as tool to record slow feeding processes of N. thermophila and N. delicatula. Three different feeding strategies could be distinguished: (i) Phagocytosis of small fragments, (ii) serial break-ups of cyanobacterial cells and (iii) bending and breaking of filaments. While observations revealed mechanical manipulation to be important for the efficient breakdown of P. rubescens filaments, the toxin microcystin had no pronounced negative effects on nucleariid cells. Growth experiments with N. thermophila/N. delicatula and different accompanying bacterial assemblages pointed to a pivotal role of distinct prokaryotic species for toxin degradation and for the growth success of the protists. Thus, the synergistic effect of nucleariids and specific bacteria favours an efficient degradation of P. rubescens along with its toxin

    FISHing for ciliates: Catalyzed reporter deposition fluorescence in situ hybridization for the detection of planktonic freshwater ciliates

    Full text link
    Planktonic ciliate species form multiple trophic guilds and are central components of freshwater food webs. Progress in molecular analytical tools has opened new insight into ciliate assemblages. However, high and variable 18S rDNA copy numbers, typical for ciliates, make reliable quantification by amplicon sequencing extremely difficult. For an exact determination of abundances, the classical morphology-based quantitative protargol staining is still the method of choice. Morphotype analyses, however, are time consuming and need specific taxonomic expertise. Catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) may represent a promising tool for the analysis of planktonic ciliates by combining molecular identification with microscopic quantification. We tested the applicability of CARD-FISH using nine cultured ciliate species. Eight species- and three genus-specific oligonucleotide probes were designed based on their 18S rRNA genes. The CARD-FISH protocol was adapted and the specificity of probes was established. We subsequently examined the precision of quantitation by CARD-FISH on single cultures and mock assemblages. Successful tests on lake water samples proved that planktonic ciliates could be identified and quantified in field samples by CARD-FISH. Double hybridizations allowed studying interspecific predator prey interactions between two ciliate species. In summary, we demonstrate that CARD-FISH with species-specific probes can facilitate studies on the population dynamics of closely related, small sized or cryptic species at high sampling frequencies

    The green tetrahymena utriculariae n. sp. (ciliophora, oligohymenophorea) with its endosymbiotic algae (micractinium sp.), living in traps of a carnivorous aquatic plant

    Full text link
    The genus Tetrahymena (Ciliophora, Oligohymenophorea) probably represents the best studied ciliate genus. At present, more than forty species have been described. All are colorless, i.e. they do not harbor symbiotic algae, and as aerobes they need at least microaerobic habitats. Here, we present the morphological and molecular description of the first green representative, Tetrahymena utriculariae n. sp., living in symbiosis with endosymbiotic algae identified as Micractinium sp. (Chlorophyta). The full life cycle of the ciliate species is documented, including trophonts and theronts, conjugating cells, resting cysts and dividers. This species has been discovered in an exotic habitat, namely in traps of the carnivorous aquatic plant Utricularia reflexa (originating from Okavango Delta, Botswana). Green ciliates live as commensals of the plant in this anoxic habitat. Ciliates are bacterivorous, however, symbiosis with algae is needed to satisfy cell metabolism but also to gain oxygen from symbionts. When ciliates are cultivated outside their natural habitat under aerobic conditions and fed with saturating bacterial food, they gradually become aposymbiotic. Based on phylogenetic analyses of 18S rRNA and mitochondrial cox1 genes T. utriculariae forms a sister group to Tetrahymena thermophila

    Molecular Data Reveal a Cryptic Diversity in the Genus Urotricha (Alveolata, Ciliophora, Prostomatida), a Key Player in Freshwater Lakes, With Remarks on Morphology, Food Preferences, and Distribution

    Full text link
    Species of the ciliate genus Urotricha are key players in freshwater plankton communities. In the pelagial of lakes, about 20 urotrich species occur throughout an annual cycle, some of which play a pivotal role in aquatic food webs. For example, during the phytoplankton spring bloom, they consume a remarkable proportion of the algal production. In ecological studies, urotrich ciliates are usually merely identified to genus rank and grouped into size classes. This is unsatisfying considering the distinct autecological properties of individual species and their specific spatial and temporal distribution patterns. As a basis for future research, we characterized in detail four common urotrich morphotypes, i.e., specimens identified as U. furcata and tentatively as U. agilis, U. pseudofurcata, and U. castalia, using state-of-the-art methods. We used an integrative polyphasic approach, in which morphological studies (in vivo observation, silver staining methods, scanning electron microscopy) were linked with a molecular approach exploiting four different gene fragments as taxonomic DNA barcodes with different resolution potential (SSU rDNA, ITS-1, ITS-2, hypervariable V4 and V9 regions of the SSU rDNA). We shed light on the diversity of urotrich ciliates as well as on their global distribution patterns, and annual cycles. Additionally, we coupled individual species occurrences and environmental parameters, and subsequently modeled the distribution and occurrence, using logistic regressions. Furthermore, for one strain putatively identified as U. castalia, we ascertained the optimal cultivation media and food preferences. Thereby, our comprehensive view on these important freshwater ciliates that frequently occur in environmental high throughput sequencing datasets worldwide will allow future studies to better exploit protistan plankton data from lakes
    corecore