377 research outputs found
Tidally Heated Exomoons around Eridani b: Observability and prospects for characterization
Exomoons are expected to orbit gas giant exoplanets just as moons orbit solar
system planets. Tidal heating is present in solar system satellites and it can
heat up their interior depending on their orbital and interior properties. We
aim to identify a Tidally Heated Exomoon's (THEM) orbital parameter space that
would make it observable in infrared wavelengths with MIRI/JWST around
Eridani b. We study the possible constraints on orbital eccentricity
and interior properties that a successful THEM detection in infrared
wavelengths can bring. We also investigate what exomoon properties need to be
independently known in order to place these constraints. We use a coupled
thermal-tidal model to find stable equilibrium points between the tidally
produced heat and heat transported within a moon. For the latter, we consider a
spherical and radially symmetric satellite with heat being transported via
magma advection in a sub-layer of melt (asthenosphere) and convection in the
lower mantle. We incorporate uncertainties in the interior and tidal model
parameters to assess the fraction of simulated moons that would be observable
with MIRI. We find that a THEM orbiting Eridani b with an
eccentricity of 0.02, would need to have a semi-major axis of 4 planetary
Roche-radii for 100% of the simulations to produce an observable moon. These
values are comparable with the orbital properties of gas giant solar system
satellites. We place similar constraints for eccentricities up to 0.1. We
conclude that if the semi-major axis and radius of the moon are known (eg. with
exomoon transits), tidal dissipation can constrain the orbital eccentricity and
interior properties of the satellite, such as the presence of melt and the
thickness of the melt containing sub-layer
Recommended from our members
Tidally heated exomoons around ϵ Eridani b: Observability and prospects for characterization
Stars and planetary system
Could we observe exomoons around β Pictoris b?
Stars and planetary system
Anti-angiogenesis: making the tumor vulnerable to the immune system
Ongoing angiogenesis has been shown to possess immune suppressive activity through several mechanisms. One of these mechanisms is the suppression of adhesion receptors, such as intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and E-selectin—adhesion molecules involved in leukocyte interactions—on the vascular endothelium. This phenomenon, when happening to the tumor endothelium, supports tumor growth due to escape from immunity. Since angiogenesis has this immune suppressive effect, it has been hypothesized that inhibition of angiogenesis may circumvent this problem. In vitro and in vivo data now show that several angiogenesis inhibitors are able to normalize endothelial adhesion molecule expression in tumor blood vessels, restore leukocyte vessel wall interactions, and enhance the inflammatory infiltrate in tumors. It is suggested that such angiogenesis inhibitors can make tumors more vulnerable for the immune system and may therefore be applied to facilitate immunotherapy approaches for the treatment of cancer
Venus Express radio occultation observed by PRIDE
Context. Radio occultation is a technique used to study planetary atmospheres
by means of the refraction and absorption of a spacecraft carrier signal
through the atmosphere of the celestial body of interest, as detected from a
ground station on Earth. This technique is usually employed by the deep space
tracking and communication facilities (e.g., NASA's Deep Space Network (DSN),
ESA's Estrack). Aims. We want to characterize the capabilities of the Planetary
Radio Interferometry and Doppler Experiment (PRIDE) technique for radio
occultation experiments, using radio telescopes equipped with Very Long
Baseline Interferometry (VLBI) instrumentation. Methods. We conducted a test
with ESA's Venus Express (VEX), to evaluate the performance of the PRIDE
technique for this particular application. We explain in detail the data
processing pipeline of radio occultation experiments with PRIDE, based on the
collection of so-called open-loop Doppler data with VLBI stations, and perform
an error propagation analysis of the technique. Results. With the VEX test case
and the corresponding error analysis, we have demonstrated that the PRIDE setup
and processing pipeline is suited for radio occultation experiments of
planetary bodies. The noise budget of the open-loop Doppler data collected with
PRIDE indicated that the uncertainties in the derived density and temperature
profiles remain within the range of uncertainties reported in previous Venus'
studies. Open-loop Doppler data can probe deeper layers of thick atmospheres,
such as that of Venus, when compared to closed-loop Doppler data. Furthermore,
PRIDE through the VLBI networks around the world, provides a wide coverage and
range of large antenna dishes, that can be used for this type of experiments
The clinical and electrophysiological investigation of tremor
The various forms of tremor are now classified in two axes: clinical characteristics (axis 1) and etiology (axis 2). Electrophysiology is an extension of the clinical exam. Electrophysiologic tests are diagnostic of physiologic tremor, primary orthostatic tremor, and functional tremor, but they are valuable in the clinical characterization of all forms of tremor. Electrophysiology will likely play an increasing role in axis 1 tremor classification because many features of tremor are not reliably assessed by clinical examination alone. In particular, electrophysiology may be needed to distinguish tremor from tremor mimics, assess tremor frequency, assess tremor rhythmicity or regularity, distinguish mechanical-reflex oscillation from central neurogenic oscillation, determine if tremors in different body parts, muscles, or brain regions are strongly correlated, document tremor suppression or entrainment by voluntary movements of contralateral body parts, and document the effects of voluntary movement on rest tremor. In addition, electrophysiologic brain mapping has been crucial in our understanding of tremor pathophysiology. The electrophysiologic methods of tremor analysis are reviewed in the context of physiologic tremor and pathologic tremors, with a focus on clinical characterization and pathophysiology. Electrophysiology is instrumental in elucidating tremor mechanisms, and the pathophysiology of the different forms of tremor is summarized in this review
Paracrine effect of regulatory T cells promotes cardiomyocyte proliferation during pregnancy and after myocardial infarction
Cardiomyocyte proliferation stops at birth when the heart is no longer exposed to maternal blood and, likewise, to regulatory T cells (Tregs) that are expanded to promote maternal tolerance towards the fetus. Here, we report a role of Tregs in promoting cardiomyocyte proliferation. Treg-conditioned medium promotes cardiomyocyte proliferation, similar to the serum from pregnant animals. Proliferative cardiomyocytes are detected in the heart of pregnant mothers, and Treg depletion during pregnancy decreases both maternal and fetal cardiomyocyte proliferation. Treg depletion after myocardial infarction results in depressed cardiac function, massive inflammation, and scarce collagen deposition. In contrast, Treg injection reduces infarct size, preserves contractility, and increases the number of proliferating cardiomyocytes. The overexpression of six factors secreted by Tregs (Cst7, Tnfsf11, Il33, Fgl2, Matn2, and Igf2) reproduces the therapeutic effect. In conclusion, Tregs promote fetal and maternal cardiomyocyte proliferation in a paracrine manner and improve the outcome of myocardial infarction
Regeneration versus scarring in vertebrate appendages and heart
Injuries to complex human organs, such as the limbs and the heart, result in pathological conditions, for which we often lack adequate treatments. While modern regenerative approaches are based on the transplantation of stem cell-derived cells, natural regeneration in lower vertebrates, such as zebrafish and newts, relies predominantly on the intrinsic plasticity of mature tissues. This property involves local activation of the remaining material at the site of injury to promote cell division, cell migration and complete reproduction of the missing structure. It remains an unresolved question why adult mammals are not equally competent to reactivate morphogenetic programmes. Although organ regeneration depends strongly on the proliferative properties of cells in the injured tissue, it is apparent that various organismic factors, such as innervation, vascularization, hormones, metabolism and the immune system, can affect this process. Here, we focus on a correlation between the regenerative capacity and cellular specialization in the context of functional demands, as illustrated by appendages and heart in diverse vertebrates. Elucidation of the differences between homologous regenerative and non-regenerative tissues from various animal models is essential for understanding the applicability of lessons learned from the study of regenerative biology to clinical strategies for the treatment of injured human organs
- …