32 research outputs found

    Alkylation of rabbit muscle creatine kinase surface methionine residues inhibits enzyme activity in vitro

    Get PDF
    Creatine kinase (CK) catalyzes the formation of phosphocreatine from adenosine triphosphate (ATP) and creatine. The highly reactive free cysteine residue in the active site of the enzyme (Cys283) is considered essential for the enzymatic activity. In previous studies we demonstrated that Cys283 is targeted by the alkylating chemical warfare agent sulfur mustard (SM) yielding a thioether with a hydroxyethylthioethyl (HETE)-moiety. In the present study, the effect of SM on rabbit muscle CK (rmCK) activity was investigated with special focus on the alkylation of Cys283 and of reactive methionine (Met) residues. For investigation of SM-alkylated amino acids in rmCK, micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry measurements were performed using the Orbitrap technology. The treatment of rmCK with SM resulted in a decrease of enzyme activity. However, this decrease did only weakly correlate to the modification of Cys283 but was conclusive for the formation of Met70-HETE and Met179-HETE. In contrast, the activity of mutants of rmCK produced by side-directed mutagenesis that contained substitutions of the respective Met residues (Met70Ala, Met179Leu, and Met70Ala/Met179Leu) was highly resistant against SM. Our results point to a critical role of the surface exposed Met70 and Met179 residues for CK activity

    Role of Chemosensory TRP Channels in Lung Cancer

    Get PDF
    Transient receptor potential (TRP) channels represent a large family of cation channels and many members of the TRP family have been shown to act as polymodal receptor molecules for irritative or potentially harmful substances. These chemosensory TRP channels have been extensively characterized in primary sensory and neuronal cells. However, in recent years the functional expression of these proteins in non-neuronal cells, e.g., in the epithelial lining of the respiratory tract has been confirmed. Notably, these proteins have also been described in a number of cancer types. As sensor molecules for noxious compounds, chemosensory TRP channels are involved in cell defense mechanisms and influence cell survival following exposure to toxic substances via the modulation of apoptotic signaling. Of note, a number of cytostatic drugs or drug metabolites can activate these TRP channels, which could affect the therapeutic efficacy of these cytostatics. Moreover, toxic inhalational substances with potential involvement in lung carcinogenesis are well established TRP activators. In this review, we present a synopsis of data on the expression of chemosensory TRP channels in lung cancer cells and describe TRP agonists and TRP-dependent signaling pathways with potential relevance to tumor biology. Furthermore, we discuss a possible role of TRP channels in the non-genomic, tumor-promoting effects of inhalational carcinogens such as cigarette smoke

    Transient Receptor Potential Channel A1 (TRPA1) Regulates Sulfur Mustard-Induced Expression of Heat Shock 70 kDa Protein 6 (HSPA6) In Vitro

    Get PDF
    The chemosensory transient receptor potential ankyrin 1 (TRPA1) ion channel perceives different sensory stimuli. It also interacts with reactive exogenous compounds including the chemical warfare agent sulfur mustard (SM). Activation of TRPA1 by SM results in elevation of intracellular calcium levels but the cellular consequences are not understood so far. In the present study we analyzed SM-induced and TRPA1-mediated effects in human TRPA1-overexpressing HEK cells (HEKA1) and human lung epithelial cells (A549) that endogenously exhibit TRPA1. The specific TRPA1 inhibitor AP18 was used to distinguish between SM-induced and TRPA1-mediated or TRPA1-independent effects. Cells were exposed to 600 mu M SM and proteome changes were investigated 24 h afterwards by 2D gel electrophoresis. Protein spots with differential staining levels were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nano liquid chromatography electrospray ionization tandem mass spectrometry. Results were verified by RT-qPCR experiments in both HEKA1 or A549 cells. Heat shock 70 kDa protein 6 (HSPA6) was identified as an SM-induced and TRPA1-mediated protein. AP18 pre-treatment diminished the up-regulation. RT-qPCR measurements verified these results and further revealed a time-dependent regulation. Our results demonstrate that SM-mediated activation of TRPA1 influences the protein expression and confirm the important role of TRPA1 ion channels in the molecular toxicology of SM

    Synthesis and biological evaluation of novel MB327 analogs as resensitizers for desensitized nicotinic acetylcholine receptors after intoxication with nerve agents

    Get PDF
    Poisoning with organophosphorus compounds, which can lead to a cholinergic crisis due to the inhibition of acetylcholinesterase and the subsequent accumulation of acetylcholine (ACh) in the synaptic cleft, is a serious problem for which treatment options are currently insufficient. Our approach to broadening the therapeutic spectrum is to use agents that interact directly with desensitized nicotinic acetylcholine receptors (nAChRs) in order to induce functional recovery after ACh overstimulation. Although MB327, one of the most prominent compounds investigated in this context, has already shown positive properties in terms of muscle force recovery, this compound is not suitable for use as a therapeutic agent due to its insufficient potency. By means of in silico studies based on our recently presented allosteric binding pocket at the nAChR, i.e. the MB327-PAM-1 binding site, three promising MB327 analogs with a 4-aminopyridinium ion partial structure (PTM0056, PTM0062, and PTM0063) were identified. In this study, we present the synthesis and biological evaluation of a series of new analogs of the aforementioned compounds with a 4-aminopyridinium ion partial structure (PTM0064-PTM0072), as well as hydroxy-substituted analogs of MB327 (PTMD90–0012 and PTMD90–0015) designed to substitute entropically unfavorable water clusters identified during molecular dynamics simulations. The compounds were characterized in terms of their binding affinity towards the aforementioned binding site by applying the UNC0642 MS Binding Assays and in terms of their muscle force reactivation in rat diaphragm myography. More potent compounds were identified compared to MB327, as some of them showed a higher affinity towards MB327-PAM-1 and also a higher recovery of neuromuscular transmission at lower compound concentrations. To improve the treatment of organophosphate poisoning, direct targeting of nAChRs with appropriate compounds is a key step, and this study is an important contribution to this research

    Alkylated epidermal creatine kinase as a biomarker for sulfur mustard exposure: comparison to adducts of albumin and DNA in an in vivo rat study

    Get PDF
    Sulfur mustard (SM) is a chemical warfare agent which use is banned under international law and that has been used recently in Northern Iraq and Syria by the so-called Islamic State. SM induces the alkylation of endogenous proteins like albumin and hemoglobin thus forming covalent adducts that are targeted by bioanalytical methods for the verification of systemic poisoning. We herein report a novel biomarker, namely creatine kinase (CK) B-type, suitable as a local biomarker for SM exposure on the skin. Human and rat skin were proven to contain CK B-type by Western blot analysis. Following exposure to SM ex vivo, the CK-adduct was extracted from homogenates by immunomagnetic separation and proteolyzed afterwards. The cysteine residue Cys(282) was found to be alkylated by the SM-specific hydroxyethylthioethyl (HETE)-moiety detected as the biomarker tetrapeptide TC(-HETE)PS. A selective and sensitive micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (mu LC-ESI MS/HRMS) method was developed to monitor local CK-adducts in an in vivo study with rats percutaneously exposed to SM. CK-adduct formation was compared to already established DNA- and systemic albumin biomarkers. CK- and DNA-adducts were successfully detected in biopsies of exposed rat skin as well as albumin-adducts in plasma. Relative biomarker concentrations make the CK-adduct highly appropriate as a local dermal biomarker. In summary, CK or rather Cys(282) in CK B-type was identified as a new, additional dermal target of local SM exposures. To our knowledge, it is also the first time that HETE-albumin adducts, and HETE-DNA adducts were monitored simultaneously in an in vivo animal study

    Acetilkolinesteraza u eritrocitima i butirilkolinesteraza u plazmi - Važni pokazatelji za liječenje osoba otrovanih organofosfornim spojevima

    Get PDF
    Inhibition of acetylcholinesterase (AChE) is regarded as the primary toxic mechanism of organophosphorus compounds (OP). Therapeutic strategies are directed to antagonise overstimulation of muscarinic receptors with atropine and to reactivate inhibited AChE with oximes. Reactivation is crucial within the neuromuscular synapse, where atropine is ineffective, since peripheral neuromuscular block eventually leads to respiratory failure. Patients with OP intoxication have to be identified as early as possible. During an international NBC-defence exercise anesthetised pigs were poisoned with sarin, followed by treatment with atropine and oxime. Blood samples were drawn and red blood cell (RBC)-AChE activity determined with a fielded test system on-site. Within a few minutes the poisoning was verified. After administration of HI-6, RBC-AChE activity increased rapidly. Blood samples were reanalysed in our laboratory in Munich. Almost identical course of the AChE activities was recorded by both systems. The more comprehensive cholinesterase status was determined in Munich. Oxime administration can be stopped when AChE is aged completely, but has to be continued as long as poison is present in the body and reactivation is possible. To aid the on-site physician in optimising diagnosis and treatment, a fielded test system should be available to allow rapid determination of the complete cholinesterase status.Inhibicija acetilkolinesteraze (AChE) smatra se primarnim mehanizmom toksičnoga djelovanja organofosfornih spojeva (OP). Strategije liječenja idu za zaustavljanjem prekomjerne stimulacije muskarinskih receptora atropinom i reaktiviranjem inhibiranog AChE oksimima. Ključna je reaktivacija u neuromuskularnoj sinapsi, u kojoj atropin nije djelotvoran, budući da neuromuskularna blokada u konačnici vodi do prestanka disanja. Važno je što ranije prepoznati otrovanje organofosfornim spojem. U jednoj međunarodnoj vježbi zaštite od nuklearnog, biološkog i kemijskog napada svinje pod anestezijom otrovane su sarinom te liječene atropinom i oksimom. Uzeti su im uzorci krvi te s pomoću terenskoga testa na licu mjesta određena aktivnost AChE u eritrocitima. Otrovanje je potvrđeno za nekoliko minuta. Nakon primjene HI-6, aktivnost AChE brzo je porasla. Isti su uzorci krvi ponovno analizirani u našem laboratoriju u Münchenu. Oba su testa zabilježila gotovo istovjetan tijek aktivnosti AChE. U Münchenu je međutim napravljen potpuniji nalaz kolinesteraza. Liječenje oksimima može se prekinuti kada AChE potpuno “ostari” (tj. dealkilira), ali ga valja nastaviti dokle god je otrov u tijelu, a reaktivacija moguća. Liječnici na terenu trebali bi raspolagati terenskim testovima radi brzoga i potpunog utvrđivanja statusa kolinesteraza, a time i kvalitetnije dijagnoze

    TRPs in Tox: Involvement of Transient Receptor Potential-Channels in Chemical-Induced Organ Toxicity—A Structured Review

    Get PDF
    Chemicals can exhibit significant toxic properties. While for most compounds, unspecific cell damaging processes are assumed, a plethora of chemicals exhibit characteristic odors, suggesting a more specific interaction with the human body. During the last few years, G-protein-coupled receptors and especially chemosensory ion channels of the transient receptor potential family (TRP channels) were identified as defined targets for several chemicals. In some cases, TRP channels were suggested as being causal for toxicity. Therefore, these channels have moved into the spotlight of toxicological research. In this review, we screened available literature in PubMed that deals with the role of chemical-sensing TRP channels in specific organ systems. TRPA1, TRPM and TRPV channels were identified as essential chemosensors in the nervous system, the upper and lower airways, colon, pancreas, bladder, skin, the cardiovascular system, and the eyes. Regarding TRP channel subtypes, A1, M8, and V1 were found most frequently associated with toxicity. They are followed by V4, while other TRP channels (C1, C4, M5) are only less abundantly expressed in this context. Moreover, TRPA1, M8, V1 are co-expressed in most organs. This review summarizes organ-specific toxicological roles of TRP channels

    High-throughput analysis of DNA interstrand crosslinks in human peripheral blood mononuclear cells by automated reverse FADU assay

    No full text
    DNA interstrand crosslinks (ICL) are induced both by several cytotoxic anti-cancer drugs as well as by the chemical warfare agent sulphur mustard (SM). Although measurement of ICL formation could be used in risk assessment or provide valuable predictive information on the response of malignant cells to crosslinking chemotherapeutic agents, respectively, it is currently not applied due to lack of appropriate standardized methodology. Here we describe a fast and convenient procedure for detection of ICL in human peripheral blood mononuclear cells (PBMC) as high-throughput method, termed ‘reverse FADU assay’. This assay detects ICL based on the prevention of time-dependent alkaline unwinding of double-stranded DNA in a cell lysate that starts from single or double strand breaks. We have successfully established and optimized the reverse FADU assay by using human PBMC exposed to the model compounds mitomycin C, melphalan and SM. Our fully automated assay version is faster than currently used methods and possesses similar sensitivity. It operates in a 96-well format, thus allowing parallel analysis of multiple samples. Furthermore, we describe optimized protocols for sample preparation, with sample volume minimized to 100 μl of blood, storage and shipment conditions. We conclude that the reverse FADU assay is an attractive candidate method for monitoring DNA damage induced by DNA crosslinking agents
    corecore