16 research outputs found

    Serological markers for human intestinal ischemia: A systematic review

    No full text
    Early and accurate diagnosis of intestinal ischemia is important in order to provide rapid and correct treatment and reduce morbidity and mortality rates. Clinical signs and symptoms are often unspecific. This systemic review sums up literature regarding human plasma biomarkers for acute mesenteric ischemia reported during the last ten years. Classic, general markers, including lactate, white cell count, base excess, show poor diagnostic accuracy for intestinal ischemia. Preliminary results for ischemia-modified albumin are promising, which is also true for the inflammatory marker procalcitonin. Best diagnostic accuracy is described for D-dimer, a-Glutathione S-transferase (a-GST) and Intestinal fatty acid binding protein (I-FABP), reflecting coagulation activity and mucosal damage respectively. Future studies should be directed at phase four questions (Do patients who undergo the diagnostic test fare better (in their ultimate health outcomes) than similar patients who do not?) for these markers and the identification of additional, novel plasma biomarkers signaling various types and stages of intestinal ischemia

    Females Are More Resistant to Ischemia-Reperfusion-induced Intestinal Injury Than Males A Human Study

    Get PDF
    BACKGROUND AND OBJECTIVE: Sex differences in responses to intestinal ischemia-reperfusion (IR) have been recognized in animal studies. We aimed to investigate sexual dimorphism in human small intestinal mucosal responses to IR. METHODS: In 16 patients (8 men and 8 women) undergoing pancreaticoduodenectomy, an isolated part of jejunum was subjected to IR. In each patient, intestinal tissue and blood was collected directly after 45 minutes of ischemia without reperfusion (45I-0R), after 30 minutes of reperfusion (45I-30R), and after 120 minutes of reperfusion (45I-120R), as well as a control sample not exposed to IR, to assess epithelial damage, unfolded protein response (UPR) activation, and inflammation. RESULTS: More extensive intestinal epithelial damage was observed in males compared to females. Intestinal fatty acid binding protein (I-FABP) arteriovenous (V-A) concentrations differences were significantly higher in males compared to females at 45I-0R (159.0 [41.0-570.5] ng/mL vs 46.9 [0.3-149.9] ng/mL). Male intestine showed significantly higher levels of UPR activation than female intestine, as well as higher number of apoptotic Paneth cells per crypt at 45I-30R (16.4% [7.1-32.1] vs 10.6% [0.0-25.4]). The inflammatory response in male intestine was significantly higher compared to females, with a higher influx of neutrophils per villus at 45I-30R (4.9 [3.1-12.0] vs 3.3 [0.2-4.5]) and a higher gene expression of TNF-α and IL-10 at 45I-120R. CONCLUSION: The human female small intestine seems less susceptible to IR-induced tissue injury than the male small intestine. Recognition of such differences could lead to the development of novel therapeutic strategies to reduce IR-associated morbidity and mortality

    Females Are More Resistant to Ischemia-Reperfusion-induced Intestinal Injury Than Males: A Human Study

    No full text
    BACKGROUND AND OBJECTIVE: Sex differences in responses to intestinal ischemia-reperfusion (IR) have been recognized in animal studies. We aimed to investigate sexual dimorphism in human small intestinal mucosal responses to IR. METHODS: In 16 patients (8 men and 8 women) undergoing pancreaticoduodenectomy, an isolated part of jejunum was subjected to IR. In each patient, intestinal tissue and blood was collected directly after 45 minutes of ischemia without reperfusion (45I-0R), after 30 minutes of reperfusion (45I-30R), and after 120 minutes of reperfusion (45I-120R), as well as a control sample not exposed to IR, to assess epithelial damage, unfolded protein response (UPR) activation, and inflammation. RESULTS: More extensive intestinal epithelial damage was observed in males compared to females. Intestinal fatty acid binding protein (I-FABP) arteriovenous (V-A) concentrations differences were significantly higher in males compared to females at 45I-0R (159.0 [41.0-570.5] ng/mL vs 46.9 [0.3-149.9] ng/mL). Male intestine showed significantly higher levels of UPR activation than female intestine, as well as higher number of apoptotic Paneth cells per crypt at 45I-30R (16.4% [7.1-32.1] vs 10.6% [0.0-25.4]). The inflammatory response in male intestine was significantly higher compared to females, with a higher influx of neutrophils per villus at 45I-30R (4.9 [3.1-12.0] vs 3.3 [0.2-4.5]) and a higher gene expression of TNF-α and IL-10 at 45I-120R. CONCLUSION: The human female small intestine seems less susceptible to IR-induced tissue injury than the male small intestine. Recognition of such differences could lead to the development of novel therapeutic strategies to reduce IR-associated morbidity and mortality

    Histopathology of human small intestinal and colonic ischemia-reperfusion: Experiences from human IR-models

    Get PDF
    Intestinal ischemia-reperfusion (IR) injury is a frequent, but potentially life-threatening condition. Although much has been learned about its pathophysiology from animal IR models, the translation to the human setting is imperative for better understanding of its etiology. This could provide us with new insight into development of early detection and potential new therapeutic strategies. Over the past decade, we have studied the pathophysiology of human small intestinal and colonic ischemia-reperfusion (IR) in newly developed human in vivo IR models. In this review, we give an overview of new insights on the sequelae of human intestinal IR, with particular attention for the differences in histopathology between small intestinal and colonic IR

    The Human Colon Is More Resistant to Ischemia-reperfusion-induced Tissue Damage Than the Small Intestine An Observational Study

    No full text
    Objective: Aim of this study was to draw comparisons between human colonic and jejunal ischemia-reperfusion sequelae in a human in vivo experimental model. Background: In patients, colonic ischemia-reperfusion generally has a milder course than small intestinal ischemia-reperfusion. It is unclear which pathophysiologic processes are responsible for this difference. Methods: In 10 patients undergoing colonic surgery and 10 patients undergoing pancreaticoduodenectomy, 6 cm colon or jejunum was isolated and exposed to 60 minutes ischemia followed by various reperfusion periods. Morphology (hematoxylin and eosin), apoptosis (M30), tight junctions (zonula occludens 1), and neutrophil influx (myeloperoxidase) were assessed using immunohistochemistry. Quantitative polymerase chain reaction and enzyme-linked immunosorbent assay were performed for interleukin-6 and tumor necrosis factor-. Results: Hematoxylin and eosin staining revealed intact colonic epithelial lining, but extensive damage in jejunal villus tips after 60 minutes ischemia. After reperfusion, the colonic epithelial lining was not affected, whereas the jejunal epithelium was seriously damaged. Colonic apoptosis was limited to scattered cells in surface epithelium, whereas apoptosis was clearly observed in jejunal villi and crypts, (42 times more M30 positivity compared with colon, P <0.01). Neutrophil influx and increased tumor necrosis factor- mRNA expression were observed in jejunum after 30 and 120 minutes of reperfusion (P <0.05). Interleukin-6 mRNA expression was increased in jejunum after 120 minutes of reperfusion (3.6-fold increase, P <0.05), whereas interleukin-6 protein expression was increased in both colon (1.5-fold increase, P <0.05) and small intestine (1.5-fold increase, P <0.05) after 30 and 120 minutes of reperfusion. Conclusions: Human colon is less susceptible to IR-induced tissue injury than small intestin

    Human small intestine is capable of restoring barrier function after short ischemic periods

    No full text
    AIM: To assess intestinal barrier function during human intestinal ischemia and reperfusion (IR). METHODS: In a human experimental model, 6 cm of jejunum was selectively exposed to 30 min of ischemia (I) followed by 30 and 120 min of reperfusion (R). A sham procedure was also performed. Blood and tissue was sampled at all-time points. Functional barrier function was assessed using dual-sugar absorption tests with lactulose (L) and rhamnose (R). Plasma concentrations of citrulline, an amino acid described as marker for enterocyte function were measured as marker of metabolic enterocytes restoration. Damage to the epithelial lining was assessed by immunohistochemistry for tight junctions (TJs), by plasma marker for enterocytes damage (I-FABP) and analyzed by electron microscopy (EM) using lanthanum nitrate as an electrondense marker. RESULTS: Plasma L/R ratio's were significantly increased after 30 min of ischemia (30I) followed by 30 min of reperfusion (30R) compared to control (0.75 ± 0.10vs0.20 ± 0.09,P< 0.05). At 120 min of reperfusion (120R), ratio's normalized (0.17 ± 0.06) and were not significantly different from control. Plasma levels of I-FABP correlated with plasma L/R ratios measured at the same time points (correlation: 0.467,P< 0.01). TJs staining shows distortion of staining at 30I. An intact lining of TJs was again observed at 30I120R. Electron microscopy analysis revealed disrupted TJs after 30I with paracellular leakage of lanthanum nitrate, which restored after 30I120R. Furthermore, citrulline concentrations closely paralleled the histological perturbations during intestinal IR. CONCLUSION: This study directly correlates histological data with intestinal permeability tests, revealing that the human gut has the ability of to withstand short episodes of ischemia, with morphological and functional recovery of the intestinal barrier within 120 min of reperfusion
    corecore