4,890 research outputs found

    Dirac equation for membranes

    Full text link
    Dirac's idea of taking the square root of constraints is applied to the case of extended objects concentrating on membranes in D=4 space-time dimensions. The resulting equation is Lorentz invariant and predicts an infinite hierarchy of positive and negative masses (tension). There are no tachyonic solutions.Comment: 5 pages, 1 figure, v2: improved version, accepted for publication as a Brief Report in Physical Review

    The 'Square Root' of the Interacting Dirac Equation

    Full text link
    The 'square root' of the interacting Dirac equation is constructed. The obtained equations lead to the Yang-Mills superfield with the appropriate equations of motion for the component fields.Comment: 6 page

    The dynamical equation of the spinning electron

    Full text link
    We obtain by invariance arguments the relativistic and non-relativistic invariant dynamical equations of a classical model of a spinning electron. We apply the formalism to a particular classical model which satisfies Dirac's equation when quantised. It is shown that the dynamics can be described in terms of the evolution of the point charge which satisfies a fourth order differential equation or, alternatively, as a system of second order differential equations by describing the evolution of both the center of mass and center of charge of the particle. As an application of the found dynamical equations, the Coulomb interaction between two spinning electrons is considered. We find from the classical viewpoint that these spinning electrons can form bound states under suitable initial conditions. Since the classical Coulomb interaction of two spinless point electrons does not allow for the existence of bound states, it is the spin structure that gives rise to new physical phenomena not described in the spinless case. Perhaps the paper may be interesting from the mathematical point of view but not from the point of view of physics.Comment: Latex2e, 14 pages, 5 figure

    P.A.M. Dirac and the Discovery of Quantum Mechanics

    Full text link
    Dirac's contributions to the discovery of non-relativistic quantum mechanics and quantum electrodynamics, prior to his discovery of the relativistic wave equation, are described

    Electromagnetism and multiple-valued loop-dependent wave functionals

    Full text link
    We quantize the Maxwell theory in the presence of a electric charge in a "dual" Loop Representation, i.e. a geometric representation of magnetic Faraday's lines. It is found that the theory can be seen as a theory without sources, except by the fact that the wave functional becomes multivalued. This can be seen as the dual counterpart of what occurs in Maxwell theory with a magnetic pole, when it is quantized in the ordinary Loop Representation. The multivaluedness can be seen as a result of the multiply-connectedness of the configuration space of the quantum theory.Comment: 5 page

    On the transformations of hamiltonian gauge algebra under rotations of constraints

    Full text link
    By explicit calculation of the effect of a ghost-dependent canonical transformation of BRST-charge, we derive the corresponding transformation law for structure coefficients of hamiltonian gauge algebra under rotation of constraints.We show the transformation law to deviate from the behaviour (expected naively) characteristic to a genuine connection.Comment: 11 pages, some misprints remove

    Properties of noncommutative axionic electrodynamics

    Full text link
    Using the gauge-invariant but path-dependent variables formalism, we compute the static quantum potential for noncommutative axionic electrodynamics, and find a radically different result than the corresponding commutative case. We explicitly show that the static potential profile is analogous to that encountered in both non-Abelian axionic electrodynamics and in Yang-Mills theory with spontaneous symmetry breaking of scale symmetry.Comment: 4 pages. To appear in PR

    Path Integral and the Induction Law

    Full text link
    We show how the induction law is correctly used in the path integral computation of the free particle propagator. The way this primary path integral example is treated in most textbooks is a little bit missleading.Comment: 5 latex pages, no figure

    On Hamiltonian formulation of the Einstein-Hilbert action in two dimensions

    Full text link
    It is shown that the well-known triviality of the Einstein field equations in two dimensions is not a sufficient condition for the Einstein-Hilbert action to be a total divergence, if the general covariance is to be preserved, that is, a coordinate system is not fixed. Consequently, a Hamiltonian formulation is possible without any modification of the two dimensional Einstein-Hilbert action. We find the resulting constraints and the corresponding gauge transfromations of the metric tensor.Comment: 9 page

    Hawking radiation of a vector field and gravitational anomalies

    Full text link
    Recently, the relation between Hawking radiation and gravitational anomalies has been used to estimate the flux of Hawking radiation for a large class of black objects. In this paper, we extend the formalism, originally proposed by Robinson and Wilczek, to the Hawking radiation of vector particles (photons). It is explicitly shown, with Hamiltonian formalism, that the theory of an electromagnetic field on d-dimensional spherical black holes reduces to one of an infinite number of massive complex scalar fields on 2-dimensional spacetime, for which the usual anomaly-cancellation method is available. It is found that the total energy emitted from the horizon for the electromagnetic field is just (d-2) times as that for a scalar field. The results support the picture that Hawking radiation can be regarded as an anomaly eliminator on horizons. Possible extensions and applications of the analysis are discussed.Comment: 14 pages, 1 figur
    corecore