277 research outputs found
Antibody-drug conjugates plus Janus kinase inhibitors enable MHC-mismatched allogeneic hematopoietic stem cell transplantation
Despite the curative potential of hematopoietic stem cell transplantation (HSCT), conditioning-associated toxicities preclude broader clinical application. Antibody-drug conjugates (ADCs) provide an attractive approach to HSCT conditioning that minimizes toxicity while retaining efficacy. Initial studies of ADC conditioning have largely focused on syngeneic HSCT. However, to treat acute leukemias or induce tolerance for solid organ transplantation, this approach must be expanded to allogeneic HSCT (allo-HSCT). Using murine allo-HSCT models, we show that pharmacologic Janus kinase 1/2 (JAK1/2) inhibition combined with CD45- or cKit-targeted ADCs enables robust multilineage alloengraftment. Strikingly, myeloid lineage donor chimerism exceeding 99% was achievable in fully MHC-mismatched HSCT using this approach. Mechanistic studies using the JAK1/2 inhibitor baricitinib revealed marked impairment of T and NK cell survival, proliferation, and effector function. NK cells were exquisitely sensitive to JAK1/2 inhibition due to interference with IL-15 signaling. Unlike irradiated mice, ADC-conditioned mice did not develop pathogenic graft-versus-host alloreactivity when challenged with mismatched T cells. Finally, the combination of ADCs and baricitinib balanced graft-versus-host disease and graft-versus-leukemia responses in delayed donor lymphocyte infusion models. Our allo-HSCT conditioning strategy exemplifies the promise of immunotherapy to improve the safety of HSCT for treating hematologic diseases
A Phase 1 Trial of CNDO-109-Activated Natural Killer Cells in Patients with High-Risk Acute Myeloid Leukemia
Natural killer (NK) cells are an emerging immunotherapy approach to acute myeloid leukemia (AML); however, the optimal approach to activate NK cells before adoptive transfer remains unclear. Human NK cells that are primed with the CTV-1 leukemia cell line lysate CNDO-109 exhibit enhanced cytotoxicity against NK cell–resistant cell lines. To translate this finding to the clinic, CNDO-109–activated NK cells (CNDO-109-NK cells) isolated from related HLA-haploidentical donors were evaluated in a phase 1 dose-escalation trial at doses of 3 × 105 (n = 3), 1 × 106 (n = 3), and 3 × 106 (n = 6) cells/kg in patients with AML in first complete remission (CR1) at high risk for recurrence. Before CNDO-109-NK cell administration, patients were treated with lymphodepleting fludarabine/cyclophosphamide. CNDO-109-NK cells were well tolerated, and no dose-limiting toxicities were observed at the highest tested dose. The median relapse-free survival (RFS) by dose level was 105 (3 × 105), 156 (1 × 106), and 337 (3 × 106) days. Two patients remained relapse-free in post-trial follow-up, with RFS durations exceeding 42.5 months. Donor NK cell microchimerism was detected on day 7 in 10 of 12 patients, with 3 patients having evidence of donor cells on day 14 or later. This trial establishes that CNDO-109-NK cells generated from related HLA haploidentical donors, cryopreserved, and then safely administered to AML patients with transient persistence without exogenous cytokine support. Three durable complete remissions of 32.6 to 47.6+ months were observed, suggesting additional clinical investigation of CNDO-109-NK cells for patients with myeloid malignancies, alone or in combination with additional immunotherapy strategies, is warranted
Machine learning-based scoring models to predict hematopoietic stem cell mobilization in allogeneic donors
Mobilized peripheral blood has become the primary source of hematopoietic stem cells for both autologous and allogeneic stem cell transplantation. Granulocyte colony-stimulating factor (G-CSF) is currently the standard agent used in the allogeneic setting. Despite the high mobilization efficacy in most donors, G-CSF requires 4-5 days of daily administration, and a small percentage of the donors fail to mobilize an optimal number of stem cells necessary for a safe allogeneic stem cell transplant. In this study, we retrospectively reviewed 1361 related allogeneic donors who underwent stem cell mobilization at Washington University. We compared the standard mobilization agent G-CSF with five alternative mobilization regimens, including GM-CSF, G-CSF+GM-CSF, GM-CSF + Plerixafor, Plerixafor and BL-8040. Cytokine-based mobilization strategies (G-CSF or in combination with GM-CSF) induce higher CD34 cell yield after 4-5 consecutive days of treatment, while CXCR4 antagonists (plerixafor and BL-8040) induce significantly less but rapid mobilization on the same day. Next, using a large dataset containing the demographic and baseline laboratory data from G-CSF-mobilized donors, we established machine learning (ML)-based scoring models that can be used to predict patients who may have less than optimal stem cell yields after a single leukapheresis session. To our knowledge, this is the first prediction model at the early donor screening stage, which may help identify allogeneic stem cell donors who may benefit from alternative approaches to enhance stem cell yields, thus ensuring safe and effective stem cell transplantation
CS1 CAR-T targeting the distal domain of CS1 (SLAMF7) shows efficacy in high tumor burden myeloma model despite fratricide of CD8+CS1 expressing CAR-T cells
Despite improvement in treatment options for myeloma patients, including targeted immunotherapies, multiple myeloma remains a mostly incurable malignancy. High CS1 (SLAMF7) expression on myeloma cells and limited expression on normal cells makes it a promising target for CAR-T therapy. The CS1 protein has two extracellular domains - the distal Variable (V) domain and the proximal Constant 2 (C2) domain. We generated and tested CS1-CAR-T targeting the V domain of CS1 (Luc90-CS1-CAR-T) and demonstrated anti-myeloma killing in vitro and in vivo using two mouse models. Since fratricide of CD8 + cells occurred during production, we generated fratricide resistant CS1 deficient Luc90- CS1- CAR-T (ΔCS1-Luc90- CS1- CAR-T). This led to protection of CD8 + cells in the CAR-T cultures, but had no impact on efficacy. Our data demonstrate targeting the distal V domain of CS1 could be an effective CAR-T treatment for myeloma patients and deletion of CS1 in clinical production did not provide an added benefit using in vivo immunodeficient NSG preclinical models
Anti-myeloma efficacy of CAR-iNKT is enhanced with a long-acting IL-7, rhIL-7-hyFc
Multiple myeloma (MM), a malignancy of mature plasma cells, remains incurable. B-cell maturation antigen (BCMA) is the lead protein target for chimeric antigen receptor (CAR) therapy because of its high expression in most MM, with limited expression in other cell types, resulting in favorable on-target, off tumor toxicity. The response rate to autologous BCMA CAR-T therapy is high; however, it is not curative and is associated with risks of cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome. Outcomes in patients treated with BCMA CAR-T cells (CAR-Ts) may improve with allogeneic CAR T-cell therapy, which offer higher cell fitness and reduced time to treatment. However, to prevent the risk of graft-versus-host disease (GVHD), allogenic BCMA CAR-Ts require genetic deletion of the T-cell receptor (TCR), which has potential for unexpected functional or phenotype changes. Invariant natural killer T cells (iNKTs) have an invariant TCR that does not cause GVHD and, as a result, can be used in an allogeneic setting without the need for TCR gene editing. We demonstrate significant anti-myeloma activity of BCMA CAR-iNKTs in a xenograft mouse model of myeloma. We found that a long-acting interleukin-7 (IL-7), rhIL-7-hyFc, significantly prolonged survival and reduced tumor burden in BCMA CAR-iNKT-treated mice in both primary and re-challenge settings. Furthermore, in CRS in vitro assays, CAR-iNKTs induced less IL-6 than CAR-Ts, suggesting a reduced likelihood of CAR-iNKT therapy to induce CRS in patients. These data suggest that BCMA CAR-iNKTs are potentially a safer, effective alternative to BCMA CAR-Ts and that BCMA CAR-iNKT efficacy is further potentiated with rhIL-7-hyFc
An off-the-shelf CD2 universal CAR-T therapy for T-cell malignancies
T-cell malignancies are associated with frequent relapse and high morbidity, which is partly due to the lack of effective or targeted treatment options. To broaden the use of CAR-T cells in pan T-cell malignancies, we developed an allogeneic universal CD2-targeting CAR-T cell (UCART2), in which the CD2 antigen is deleted to prevent fratricide, and the T-cell receptor is removed to prevent GvHD. UCART2 demonstrated efficacy against T-ALL and CTCL and prolonged the survival of tumor-engrafted NSG mice in vivo. To evaluate the impact of CD2 on CAR-T function, we generated CD19 CAR-T cells (UCART19) with or without CD2 deletion, single-cell secretome analysis revealed that CD2 deletion in UCART19 reduced frequencies of the effector cytokines (Granzyme-B and IFN-γ). We also observed that UCART19ΔCD2 had reduced anti-tumor efficacy compared to UCART19 in a CD19+NALM6 xenograft model. Of note is that the reduced efficacy resulting from CD2 deletion was reversed when combined with rhIL-7-hyFc, a long-acting recombinant human interleukin-7. Treatment with rhIL-7-hyFc prolonged UCART2 persistence and increased survival in both the tumor re-challenge model and primary patient T-ALL model in vivo. Together, these data suggest that allogeneic fratricide-resistant UCART2, in combination with rhIL-7-hyFc, could be a suitable approach for treating T-cell malignancies
Blinatumomab consolidation post-autologous stem cell transplantation in patients with diffuse large B-cell lymphoma
Outcomes in patients with relapsed diffuse large B-cell lymphoma (DLBCL) who undergo autologous stem cell transplant (auto-SCT) are poor. Blinatumomab is a CD3/CD19 bispecific T-cell engager that directs cytotoxic T cells to CD19+ cells. Here, we performed a pilot study of blinatumomab consolidation after auto-SCT for 14 patients with DLBCL or transformed follicular lymphoma. All patients underwent standard-of-care auto-SCT with carmustine, etoposide, cytarabine, and melphalan (BEAM) conditioning followed by 1 cycle (4 weeks continuous infusion) of blinatumomab consolidation starting at day 42 after auto-SCT. All 14 patients treated on study completed BEAM auto-SCT and 1 cycle of posttransplant blinatumomab. Five patients developed grade 1 cytokine release syndrome (CRS), with no grade 2 or higher CRS. Immune effector cell-associated neurotoxicity syndrome was not observed. Patients were followed up for 3 years after auto-SCT, with median follow-up of 37 (range, 12-65) months. One-hundred days after auto-SCT (1 month after blinatumomab consolidation), 12 patients (86%) had achieved complete remission. At 1 year after auto-SCT, 7 patients (50%) remained in CR, and 1 patient had died of progressive disease. Patients who relapsed had a lower CD8:CD4 T-cell ratio before starting blinatumomab than patients who remained in remission. This pilot study demonstrates blinatumomab consolidation after auto-SCT is safe and well tolerated. Strategies to increase the CD8:CD4 ratio and use additional cycles of consolidation in a larger randomized trial are needed to confirm the efficacy of consolidation with blinatumomab after auto-SCT. This trial was registered at www.clinicaltrials.gov as #NCT03072771
Hematopoietic stem cell mobilization with the reversible CXCR4 receptor inhibitor plerixafor (AMD3100)—Polish compassionate use experience
Recent developments in the field of targeted therapy have led to the discovery of a new drug, plerixafor, that is a specific inhibitor of the CXCR4 receptor. Plerixafor acts in concert with granulocyte colony-stimulating factor (G-CSF) to increase the number of stem cells circulating in the peripheral blood (PB). Therefore, it has been applied in the field of hematopoietic stem cell mobilization. We analyzed retrospectively data regarding stem cell mobilization with plerixafor in a cohort of 61 patients suffering from multiple myeloma (N = 23), non-Hodgkin’s lymphoma (N = 20), or Hodgkin’s lymphoma (N = 18). At least one previous mobilization attempt had failed in 83.6% of these patients, whereas 16.4% were predicted to be poor mobilizers. The median number of CD34+ cells in the PB after the first administration of plerixafor was 22/μL (range of 0–121). In total, 85.2% of the patients proceeded to cell collection, and a median of two (range of 0–4) aphereses were performed. A minimum of 2.0 × 106 CD34+ cells per kilogram of the patient’s body weight (cells/kg b.w.) was collected from 65.6% of patients, and the median number of cells collected was 2.67 × 106 CD34+ cells/kg b.w. (0–8.0). Of the patients, 55.7% had already undergone autologous stem cell transplantation, and the median time to neutrophil and platelet reconstitution was 12 and 14 days, respectively. Cases of late graft failure were not observed. We identified the diagnosis of non-Hodgkin’s lymphoma and previous radiotherapy as independent factors that contributed to failure of mobilization. The current report demonstrates the satisfactory efficacy of plerixafor plus G-CSF for stem cell mobilization in heavily pre-treated poor or predicted poor mobilizers
- …