103 research outputs found
Transcriptome profiling of the feeding-to-fasting transition in chicken liver
<p>Abstract</p> <p>Background</p> <p>Starvation triggers a complex array of adaptative metabolic responses including energy-metabolic responses, a process which must imply tissue specific alterations in gene expression and in which the liver plays a central role. The present study aimed to describe the evolution of global gene expression profiles in liver of 4-week-old male chickens during a 48 h fasting period using a chicken 20 K oligoarray.</p> <p>Results</p> <p>A large number of genes were modulated by fasting (3532 genes with a pvalue corrected by Benjamini-Hochberg < 0.01); 2062 showed an amplitude of variation higher than +/- 40% among those, 1162 presented an human ortholog, allowing to collect functional information. Notably more genes were down-regulated than up-regulated, whatever the duration of fasting (16 h or 48 h). The number of genes differentially expressed after 48 h of fasting was 3.5-fold higher than after 16 h of fasting. Four clusters of co-expressed genes were identified by a hierarchical cluster analysis. Gene Ontology, KEGG and Ingenuity databases were then used to identify the metabolic processes associated to each cluster. After 16 h of fasting, genes involved in ketogenesis, gluconeogenesis and mitochondrial or peroxisomal fatty acid beta-oxidation, were up-regulated (cluster-1) whereas genes involved in fatty acid and cholesterol synthesis were down-regulated (cluster-2). For all genes tested, the microarray data was confirmed by quantitative RT-PCR. Most genes were altered by fasting as already reported in mammals. A notable exception was the <it>HMG-CoA synthase 1 </it>gene, which was up-regulated following 16 and 48 h of fasting while the other genes involved in cholesterol metabolism were down-regulated as reported in mammalian studies. We further focused on genes not represented on the microarray and candidates for the regulation of the target genes belonging to cluster-1 and -2 and involved in lipid metabolism. Data are provided concerning PPARa, SREBP1, SREBP2, NR1H3 transcription factors and two desaturases (FADS1, FADS2).</p> <p>Conclusion</p> <p>This study evidences numerous genes altered by starvation in chickens and suggests a global repression of cellular activity in response to this stressor. The central role of lipid and acetyl-CoA metabolisms and its regulation at transcriptional level are confirmed in chicken liver in response to short-term fasting. Interesting expression modulations were observed for <it>NR1H3, FADS1 </it>and <it>FADS2 </it>genes. Further studies are needed to precise their role in the complex regulatory network controlling lipid metabolism.</p
Pyroséquençage pour le développement d'EST et de SNP aviaires
Le but du programme est de combler les dĂ©ficits en marqueurs observĂ©s pour trois espĂšces aviaires : la caille, le canard et la poule. La stratĂ©gie choisie est l'obtention, Ă partir de plusieurs individus de lignĂ©es d'intĂ©rĂȘt, de SNP (Single Nucleotide Polymorphism, polymorphisme d'un nuclĂ©otide) par une nouvelle technologie de sĂ©quençage Ă haut dĂ©bit (sĂ©quenceur 454 GS-FLX, Roche). Nous sĂ©quençons des reprĂ©sentations rĂ©duites du gĂ©nome, en sĂ©lectionnant d'une part des fragments de restriction d'ADN gĂ©nomique - les mĂȘmes chez tous les individus - et d'autre part les transcrits qui reprĂ©sentent globalement la partie du gĂ©nome correspondant aux gĂšnes exprimĂ©s. Ces expĂ©rimentations sont rĂ©alisĂ©es Ă partir d'Ă©chantillons d'ADN ou d'ARN issus d'individus de lignĂ©es Ă l'origine de croisements existants, pour chacune des trois espĂšces. Les donnĂ©es gĂ©nĂ©rĂ©es par plusieurs "runs" de sĂ©quence seront traitĂ©es in silico : contigage Ă haut dĂ©bit, recherche de SNP, comparaison avec les banques de sĂ©quences connues...En plus de l'intĂ©rĂȘt que reprĂ©sente la production d'un trĂšs grand nombre de SNP nouveaux, cette technologie devrait permettre de mieux sĂ©quencer les rĂ©gions riches en (G+C) correspondant aux plus petits des microchromosomes pour lesquels il n'y a pas de sĂ©quence chez la poule. La comparaison des sĂ©quences des transcrits obtenues chez la caille et le canard avec la sĂ©quence du gĂ©nome de la poule permettra d'Ă©tablir une "cartographie virtuelle" des SNP obtenus, grĂące Ă la grande conservation de syntĂ©nie existant entre ces trois espĂšces
Ribosomal RNA 2âČO-methylation as a novel layer of inter-tumour heterogeneity in breast cancer
International audienceRecent epitranscriptomics studies unravelled that ribosomal RNA (rRNA) 2âČO-methylation is an additional layer of gene expression regulation highlighting the ribosome as a novel actor of translation control. However, this major finding lies on evidences coming mainly, if not exclusively, from cellular models. Using the innovative next-generation RiboMeth-seq technology, we established the first rRNA 2âČO-methylation landscape in 195 primary human breast tumours. We uncovered the existence of compulsory/stable sites, which show limited inter-patient variability in their 2âČO-methylation level, which map on functionally important sites of the human ribosome structure and which are surrounded by variable sites found from the second nucleotide layers. Our data demonstrate that some positions within the rRNA molecules can tolerate absence of 2âČO-methylation in tumoral and healthy tissues. We also reveal that rRNA 2âČO-methylation exhibits intra- and inter-patient variability in breast tumours. Its level is indeed differentially associated with breast cancer subtype and tumour grade. Altogether, our rRNA 2âČO-methylation profiling of a large-scale human sample collection provides the first compelling evidence that ribosome variability occurs in humans and suggests that rRNA 2âČO-methylation might represent a relevant element of tumour biology useful in clinic. This novel variability at molecular level offers an additional layer to capture the cancer heterogeneity and associates with specific features of tumour biology thus offering a novel targetable molecular signature in cancer
Low level of Fibrillarin, a ribosome biogenesis factor, is a new independent marker of poor outcome in breast cancer
International audienceBackground: A current critical need remains in the identification of prognostic and predictive markers in early breast cancer. It appears that a distinctive trait of cancer cells is their addiction to hyperactivation of ribosome biogenesis. Thus, ribosome biogenesis might be an innovative source of biomarkers that remains to be evaluated. Methods: Here, fibrillarin (FBL) was used as a surrogate marker of ribosome biogenesis due to its essential role in the early steps of ribosome biogenesis and its association with poor prognosis in breast cancer when overexpressed. Using 3,275 non-metastatic primary breast tumors, we analysed FBL mRNA expression levels and protein nucleolar organisation. Usage of TCGA dataset allowed transcriptomic comparison between the different FBL expression levelsrelated breast tumours. Results: We unexpectedly discovered that in addition to breast tumours expressing high level of FBL, about 10% of the breast tumors express low level of FBL. A correlation between low FBL mRNA level and lack of FBL detection at protein level using immunohistochemistry was observed. Interestingly, multivariate analyses revealed that these low FBL tumors displayed poor outcome compared to current clinical gold standards. Transcriptomic data revealed that FBL expression is proportionally associated with distinct amount of ribosomes, low FBL level being associated with low amount of ribosomes. Moreover, the molecular programs supported by low and high FBL expressing tumors were distinct. Conclusion: Altogether, we identified FBL as a powerful ribosome biogenesis-related independent marker of breast cancer outcome. Surprisingly we unveil a dual association of the ribosome biogenesis FBL factor with prognosis. These data suggest that hyper-but also hypo-activation of ribosome biogenesis are molecular traits of distinct tumors
Staphylococcal Adhesion and Host Cell Invasion: Fibronectin-Binding and Other Mechanisms
Opportunistic bacteria from the genus Staphylococcus can cause life-threatening infections such as pneumonia, endocarditis, bone and joint infections, and sepsis. This pathogenicity is closely related to their capacity to bind directly to the extracellular matrix or to host cells. Adhesion is indeed the first step in the formation of biofilm or the invasion of host cells, which protect the bacteria from the host immune system and facilitate chronic infection. Adhesion relies on the expression of a repertoire of surface proteins called adhesins, notably microbial surface components recognizing adhesive matrix molecules. In this short review, we discuss the main pathway (FnBP-Fn-α5ÎČ1 integrin), as well as alternatives, through which Staphylococcus aureus adheres to and then invades non-professional phagocytic cells. We then examine the corresponding mechanisms for coagulase negative staphylococci. There is currently a little understanding of the molecular mechanisms that lead to internalization. Filling this gap in the literature would therefore be an important step toward limiting the duration of staphylococci infections in clinical practice
RNA-Seq transcriptome data of the liver of common Pekin, Muscovy, mule and Hinny ducks fed ad libitum or overfed
International audienceDuck species are known to have different ability to fatty liver production in response to overfeeding and gene expression analyses can help to characterize mechanisms involved in these differences. This data article reports the sequencing of RNAs extracted from the liver of Pekin and Muscovy duck species and of their reciprocal hybrids, Mule and Hinny ducks fed ad libitum or overfed. Libraries were prepared by selecting polyadenylated mRNAs and RNA Sequencing (RNASeq) was performed using Illumina HiSeq2000 platform. RNASeq data presented in this article were deposited in the NCBI sequence read archive (SRA) under the accession number SRP144764 and links to these data were also indicated in the Data INRAE repository (https://doi.org/10.15454/JJZ3QQ). Transcriptome analyses of these data were published in HĂ©rault et al. (2019) and Liu et al. (2020
Staphylococcal Adhesion and Host Cell Invasion: Fibronectin-Binding and Other Mechanisms
International audienceOpportunistic bacteria from the genus Staphylococcus can cause life-threatening infections such as pneumonia, endocarditis, bone and joint infections, and sepsis. This pathogenicity is closely related to their capacity to bind directly to the extracellular matrix or to host cells. Adhesion is indeed the first step in the formation of biofilm or the invasion of host cells, which protect the bacteria from the host immune system and facilitate chronic infection. Adhesion relies on the expression of a repertoire of surface proteins called adhesins, notably microbial surface components recognizing adhesive matrix molecules. In this short review, we discuss the main pathway (FnBP-Fn-α5ÎČ1 integrin), as well as alternatives, through which Staphylococcus aureus adheres to and then invades non-professional phagocytic cells. We then examine the corresponding mechanisms for coagulase negative staphylococci. There is currently a little understanding of the molecular mechanisms that lead to internalization. Filling this gap in the literature would therefore be an important step toward limiting the duration of staphylococci infections in clinical practice
Caractérisation et comparaison fonctionnelle de listes de gÚnes : apport de la sémantique.
International audienc
- âŠ